National Education Policy 2020 Inserted PG Programme on the basis of "Choice Based Credit System-CBCS"

Bachelor (4th Year) Honours/Honours Research/Masters (PG 1st Year)/ Masters (PG 2nd Year) of Science in Chemistry

(w.e.f. Session 2024-25)
Approved by BOS on 08.10.2024

Board of Studies- Chemistry

Maharaja Suhel Dev University,

Azamgarh-276128, Uttar Pradesh (INDIA)

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

SYLLABUS OF B.Sc. (4th Year) HONOURS / HONOURS RESEARCH/ M. Sc. (1st Year) & M. Sc. (2nd Year) OF CHEMISTRY

MAHARAJA SUHEL DEV STATE UNIVERSITY, AZAMGARH

Semester wise Titles of the Papers for B.Sc. (4th Year) HONOURS / HONOURS RESEARCH /
M.Sc. (1st Year) & M.Sc. (2nd Year) IN CHEMISTRY

Academic Year 4th [Semester VIII] BACHELOR HONOURS / BACHELOR HONOURS RESEARCH /MASTERS Year1st [Semester I] in CHEMISTRY

- A. For B.Sc. (4th Year) HONOURS
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). One Papers (4 credits) is elective.
 - (iii). Practical (4 credits) is compulsory.
- B. For B.Sc. (4th Year) HONOURS RESEARCH
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). Practical (4 credits) is compulsory.
 - (iii). Research Project (4 credits) is compulsory.
- C. For M.Sc. (1st Year)
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). One Papers (4 credits) is elective.

(iii). Practical (4 credits) is compulsory.

Course Code	Course Title	Category of	Nature of	Credits
		Course	Course	
B020701T	Inorganic Chemistry-I	Compulsory	Theory	4
B020702T	Organic Chemistry-I	Compulsory	Theory	4
B020703T	Physical Chemistry-I	Compulsory	Theory	4
B020704T	Principles of Spectroscopy	Elective	Theory	4
B020705T	Analytical Techniques	Elective	Theory	4
B020706P	Chemistry Practical	Compulsory	Practical	4
B020707R	Research Project	Compulsory	Research	4
· •		Total Credit Load for	r Semester-VII	20

Academic Year 4th [Semester VIII] BACHELOR HONOURS / BACHELOR HONOURS RESEARCH /MASTERS Year1st [Semester II] in CHEMISTRY

- For B.Sc. (4th Year) HONOURS
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). One Papers (4 credits) is elective.
 - (iii). Practical (4 credits) is compulsory.
- For B.Sc. (4th Year) HONOURS RESEARCH
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). Practical (4 credits) is compulsory.
 - (iii). Research Project (4 credits) is compulsory.
- For M.Sc. (1st Year)
 - (i). Three Papers (4 credits) each are compulsory.
 - (ii). One Papers (4 credits) is elective.

(iii). Practical (4 credits) is compulsory.

Course Code	Course Title	Category of Course	Nature of Course	Credits
B020801T	Inorganic Chemistry-II	Compulsory	Theory	4
B020802T	Organic Chemistry-II	Compulsory	Theory	4
B020803T	Physical Chemistry-II	Compulsory	Theory	4

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

	Cumulative Credit Load Semester	VII an	d Semester-VIII	40
	Total Credit L	oad fo	or Semester-VIII	20
B020807R	Research Project Compu	Isory	Research	4
B020806P	Chemistry Practical Compu	Isory	Practical	4
B020805T	Environmental Chemistry Electiv	е	Theory	4
B020804T	Applications of Spectroscopy Electiv	е	Theory	4

Academic Year 5th [Semester IX] MASTER of SCIENCE in CHEMISTRY

- Two Papers of (4 credits) each are compulsory.
- Students have to choose any one paper from two elective/optional papers (4 credit).
- Practical (4 credits) is compulsory

Research project (4 credits) is compulsory.

Course	Course Title	Category of	Nature of	Credits
Code		Course	Course	
B020901T	Inorganic Reaction Mechanism	Compulsory	Theory	4
B020902T	Stereochemistry and Pericyclic Reactions	Compulsory	Theory	4
B020903T	Biochemistry	Elective	Theory	4
B020904T	Chemical Dynamics	Elective	Theory	4
B020905P	Practical	Compulsory	Practical	4
B020906R	Research Project	Compulsory	Dissertation	4
		Total Credit Lo	oad for Semester-IX	20

Academic Year 5th [Semester X] MASTER of SCIENCE in CHEMISTRY

Students have to choose any one group from (A or B or C) (12 credits each).

Practical (4 credits) is compulsory

Research project (4 credits) is compulsory.

Course	Section	Course Title	Category of	Nature of	Credits
Code			Course	Course	
B021001T	Α	Structural methods in Inorganic Chemistry	Elective	Theory	4
B021002T	1	Inorganic Rings, Chains and Clusters	Elective	Theory	4
B021003T	1	Bio-inorganic Chemistry	Elective	Theory	4
B021004T		Reagents and Reaction	Elective	Theory	4
B021005T	В	Organic Synthesis	Elective	Theory	4
B021006T		Medicinal Chemistry	Elective	Theory	4
B021007T	C	Solid State Chemistry	Elective	Theory	4
B021008T	-	Electrochemistry	Elective	Theory	4
B021009T	-	Polymer Chemistry	Elective	Theory	4
B021010P		Practical	Compulsory	Practical	4
B021011R		Research Project	Compulsory	Dissertation	4
BUZIUTIK		11000ardii - 1-je-t-	Total Credit Loa	d for Semester-X	20
		Cumulative Credit			40

NOTE-1. The examination shall comprise of four theory papers each of three hours duration and practical examination of 18 hours duration (spread over three days) in each semester.

2. The title/topic of research project is on the discretion of supervisor, therefore no syllabus required. The maximum marks to be awarded is 50/Semester

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Jun Jage Roopeday

Detailed Syllabus

Academ	nic Year 4 th [Semester VIII] BACHELOR	Year-FOURTH		
HONOU	RS / BACHELOR HONOURS RESEARCH	Semeste	er-SEVENTH(VII)	
/MASTE	RS Year1st [Semester I] in CHEMISTRY			
	B020701T	Demon I (T)		
	CREDITS=4	Paper-I (Theory)	NORGANIC	CHEMISTRY-I
MAY MARKS 100				
	TOTAL NUMBER OF	MIN PASS	NG MARKS	3:33
UNIT	TOPICS	LECTURES=50		
	Stereochemistry and Bonding in Main Group	Compounds		No of Lecture:
	VSEPR, Walsh diagrams (tri- and penta-atomic	moloculos) d= == basel		10
11	Metal-Ligand Equilibria in Solution-			
	Stepwise and overall formation constants and the	10		
	constants, factors affecting the stability of metal			
	I hattire of metal ion and ligang, chelate effect an	d its thermodynamic origi	_	
	determination of binary formation constants by r	OH-metry and spectrophot	tometry	
111	metal-Liganu Bonding-			10
	Limitation of crystal field theory, John-Teller dist	10		
	octahedral, tetrahedral and square planar comp	lexes.	ulcoly,	
IV	Molecular Symmetry-			10
	Symmetry elements and symmetry operations	10		
	point symmetry group in inorganic and co-ordin	, symmetry groups and s	subgroups,	
V	point symmetry group in inorganic and co-ordination compounds. Electronics Spectra and magnetic Properties of Transition Metal Complexes-			
	Spectroscopic ground states, correlation. Orgel	10		
	transition metal complexes (41 d9 states) and at	grams for		
	transition metal complexes (d¹-d³ states), calcul	ations of Dq. B and β pa	rameters,	
	charge transfer spectra, anomalous magneti	c moments, magnetic	exchange	
	coupling and spin crossover.			
ammond				The same of the sa

Recommended Books:

- 1. Advanced Inorganic Chemistry, F. A. Cotton and G. Wilkinson, John Wiley
- 2. Inorganic Chemistry, J. E. Huheey, Ellen A. Keiter, Richard L. Keiter, Addison Wesley Longman (Singapore) Pvt. Ltd.
- 3. Chemistry of the Elements, N. N. Greenwood and A. Earnshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A. B. P. Lever, Elsevier
- 5. Magnetochemistry, R. L. Carlin, Springer Verlag
- 6. Modern Spectroscopy, J. M. Hollas, John Wiley.
- 7. Chemical Applications of Group Theory, F. A. Cotton.
- 8. Symmetry and Group theory: Some chemical applications, Ramashankar and Suresh Ameta, Himanshu Publications, Udaipur, Delhi.
- 9. K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New Age

10. Inorganic Chemistry, D. E. Shriver, P. W. Atkins and C. H. L. Langford, Oxford

	020/021	Paper-II (Theory) ORGANIC CHEMISTR	Y-I
	CREDITS=4	COMPULSORY	
	MAX MARKS:100	MIN PASSING MARKS:	33
	TOTA	AL NUMBER OF LECTURES=50	
UNIT		TOPICS	No of Lectures
. 1 ',	Aromaticity and Reaction M	lechanism	08
	anti-aromaticity and homo-are	romaticity in benzenoid, non-benzenoid compounds, omaticity. Hammond's postulate, Curtin-Hammett ntial energy diagrams, methods of determining	4.0

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

En Joseph Royadan

	mechanisms.			
II	Free Radical Reactions- Allylic halogenation (NBS), oxidation of a oxidation, coupling of alkynes, Free radic Elimination Reactions- The Factor and Free mechanisms and the	al rearrangement, Hunsdiecker reaction.	10	
	Mechanism and orientation in pyrolytic e	ng base, the leaving group and the medium.	^	
III	Mechanistic and stereochemical aspects nucleophiles and free radicals. Regio an reactivity. Addition to cyclopropane ring. asymmetric epoxidation, Stereochemistry Addition to Carbon-Hetero atom Multiple 10 Methods 10 Met	onds- s of addition reaction involving electrophiles, d chemo selectivity, orientation and Hydroboration, Michael reaction, Sharpless y of epoxidation and halolactonisation. ple Bonds- othetic applications and Aldol condensation.	10	
	Aliphatic Nucleophilic Substitution- The SN2, SN1, mixed SN1', SN2', SNi and SET mechanisms, The neighbouring group mechanism, neighbouring group participation (anchimeric assistance) by oxygen, halogen and sulphur as a neighbouring group. Nucleophilic substitution at an allylic, aliphatic trigonal and vinylic carbon, reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium.			
V				
	Aromatic Nucleophilic Substitution- The ArSN1, ArSN2 and benzyne mechan structure, leaving group and attacking nuclear Hauser and Smiles rearrangements.			
Stereochemic Organic Che Advanced Or Advanced Or Mechanism a	d Books: stry of Organic Compounds, Nasipuri, New stry of Carbon Compounds, E. L. Eliel and Smistry, J. Clayden, N. Greeves, S. Warren arganic Chemistry, A. F. A. Carey and R. J. Sgranic Chemistry, J. March, 6th Ed. and structure in Organic Chemistry, P. S. Go Mechanism in Organic Chemistry, Orient L	S. H. Wilen and P. Wothers (Oxford Press.) Sundberg, 5th Ed. Springer (2007) Gould (Holt, Rinehart and Winston)		
3020703T		neory) PHYSICAL CHEMISTRY-I		
	CREDITS=4	COMPULSORY		
	MAX MARKS:100	MIN PASSING MARKS:33		
	TOTAL NUMBE	R OF LECTURES=50		
UNIT		TOPICS	No of Lectures	
11	Classical Thermodynamics- Brief description of the laws of thermodyna Entropy changes accompanying changes of	amics, Concept of entropy and residual entropy of phase, calculation of entropy changes of a	15	

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

all from toght engador

	ideal gas with change in P, V, and T, Criteria for reversible and irreversible processes, Gibb's Free energy and its change with temperature and pressure, Concept of Fugacity, determination of fugacity of a gas, calculation of fugacity at low pressure. Thermodynamic Functions of Mixing, Non-ideal systems.	
11	Chemical Thermodynamics-	10
	Chemical potential and Entropies, Partial molar quantities: Partial molar free energy, Partial molar volume and Partial molar heat content and their significances. Determinations of the partial molar quantities., Gibb's Duhem Equation.	
Ш	Statistical thermodynamics-	15
	Concept of distribution, thermodynamic probability and most probable Distribution. The Boltzmann distribution law, Fermi-Dirac and Bose-Einstein statistics. Partition functions – translational, rotational, vibrational and electronic partition functions, calculation of thermodynamic properties in terms of partition functions.	
IV	Non-Equilibrium Thermodynamics-	10
	Thermodynamic criteria for non-equilibrium states, entropy production and entropy flow, entropy balance equations for different irreversible processes (e.g. heat flow, chemical reaction etc.) transformations of the generalized fluxes and forces, non-equilibrium stationary states. phenomenological equations, Onsager reciprocal relations.	

- Physical Chemistry P.W. Atkins, ELBS.
- 2. Advanced Physical Chemistry, Puri, Sharma & Pathania, Vishal Publication, Jalandhar
- 3. Statistical Thermodynamics, S. Glasstton, Willey Publication.
- 4. Advanced Physical Chemistry, Vol.I,II & III K.L.Kapoor, Mac Millan Publication.
- 5. Molecular Thermodynamics, J Rajaram and Kuriacose, Mac Millan Publication.

6. Physical Chemistry, Ira & N. Levine, Pearson Publication

B02	20704T Paper-IV (Theory) PRINCIPLES OF SPECTROSCOPY						
CR	EDITS=4	OPTIONAL/ ELECTIVE					
MAX	X MARKS:100 MIN PASSING MARKS:33						
		TOTAL NUMBER OF LECTURES=50					
UNIT	TOPICS						
1		Spectroscopy-	10				
		Classification of molecules, rigid rotor model, Effect of isotopic substitution on the transition					
		ntensities, non-rigid rotor. Applications.					
11	Infrared Spe	ectroscopy-	10				
	Review of lin	ear harmonic oscillator, vibrational energies of diatomic molecule, zero point					
	energy, force constant and bond strength; anharmonicity, vibration-rotation spectroscopy. P.Q.R. branches, vibrations of polyatomic molecules, Selection rules, normal modes of						
	vibration.	nes, vibrations of polyatomic molecules, Selection fules, normal modes of					
III		troscony.	10				
111	Raman Spectroscopy- Classical and quantum theories of Raman Effect. Pure rotational, vibrational and						
	vibrational-ro	tational Raman spectra, selection rules, mutual exclusion, principle.					
		of Raman spectroscopy.					
IV	Electronic/M	olecular spectroscopy-	10				
	Energy levels	, molecular orbitals, vibronic transitions, vibrational progressions and					
	geometry of t	he excited states; Franck-Condon principle, electronic spectra of polyatomic					
	molecules. Et	mission spectra; Radioactive and non-radioactive decay, internal conversion					
V	Nuclear mag	netic Resonance Spectroscopy-	10				
	Nuclear spin,	nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift					
	and its measu	urements, factors influencing nuclei, chemical shift and its measurements,					
	factors influer	noing chemical shift de shielding, spin-spin interactions factors influencing					
	coupling cons	tant 'J' Effect of chemical exchange, spin decoupling, basic ideas about					
	instrument, N	MR studies of nuclei other than proton-13C and 19F					

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

What sounday

- 1. Modern Spectroscopy. J M Hollas, John Willey
- 2. Introduction to molecular Spectroscopy, M Barrow, Mc Graw Hill.
- 3. Molecular Spectroscopy, C M Banewell, Mc Graw Hill
- 4. Basic Principles of Spectroscopy, R Chang, Mc Graw Hill

5. Theory and Applications of UV Spectroscopy, H H Zaffar & Orchin, IBS Oxford.

B020705T		Paper-V(Theory) ANALYTICAL TECHNIQUES	
	DITS=4	OPTIONAL/ ELECTIVE	
MAX MARKS:	100	MIN PASSING MARKS:33	
UNIT	_	TOPICS	No of Lectures
'	Accura errors a	in Quantitative Analysis- cy, precision, sensitivity, specificity, standarddeviation, classification of and their minimization, significant figures, Normal error curve.	10
II	Analyti Principle	cal Spectroscopy- e, applications and limitations of spectrophotometry, Beer-Lambert law, s of mixtures, atomic absorption spectrometry (AAS).	10
III	Principle linear so principle	metry and Potentiometry- es, voltammograms, equation of voltammogram, different waveforms— can, square scan and triangular scan, cyclic voltammetry. General es, calomel electrodes, Ag/AgCl electrodes, membrane electrodes — ion e electrodes, glass electrodes, liquid membrane electrodes.	10
IV	Chroma Partition retention idea about layer chr	and distribution, principles of chromatography, plate and rate theory. In time and retention factor, resolution and separation factor; general out adsorption, partition and column chromatography, paper and thin comatography, gas chromatography (GC) and high performance liquid ography (HPLC).	10
V	Thermo- Thermal	-analytical Methods- methods of analysis: Principles and instrumentations of TG and DTA. nentary nature of TG and DTA. Differential scanning calorimeter	10

Recommended Books:

DOSOTOCD

- 1. P.W. Atkins, Physical Chemistry, Oxford University Press, New York.
- 2. S. Glasston, Physical Chemistry, Nostrand.
- 3. Advance Physical Chemistry (Vol-1,2,3,4), K.L. Kapoor, MacMillan, India
- 4. Puri Sharma Pathania, Advance Physical Chemistry.
- 5. J.O.M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Vol.2, Plenum Press, New York.
- 6. Molecular Quantum Mechanics By P.W. Atkins Oxford University Press, Oxford New York

7. Physical Chemistry, Ira N. Levine

B02	BUZU706P Paper-VI (Practical) CHEMISTRY PRACTICAL		
CR	CREDITS=4 COMPULSORY		
MAX	MAX MARKS:100 MIN PASSING MARKS:33		
		TOTAL NUMBER OF LECTURES/LABS=90	
UNIT		TOPICS	No of
			Lectures
ı	INORGANIC C	CHEMISTRY	30
	Qualitative Ana	alysis	
	1. Qualitative n	nixture analysis for seven radicals including two rare elements. (Mo, W, Ti,	
	Zr, Th, Ce, V) i	in cationic and anionic forms.	
	2. Separation of	of a mixture of cations/anions by paper chromatographic technique using	
	aqueous/non-a	queous media.	
	(i) Pb2+ and Ag	(aqueous and non-aqueous media)	

Depar VI (Practical) CHEMISTRY DRACTICAL

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

6

Ruyado Ruyado

	(ii) Co ²⁺ and Cu ²⁺ (non-aqueous medium)	
	(iii) CI- and I- (aqueous-acetone medium)	(
	(iv) Br and I (aqueous-acetone medium)	
11	ORGANIC CHEMISTRY	30
	 Separation and identification of organic compounds using chemical methods from binary mixtures. 	ζ.
	Estimation of glucose, aldehydes and ketones by chemical and spectroscopic methods.	
	Synthesis of Dibenzalacetone from benzaldehyde.	
111	PHYSICAL CHEMISTRY	30
	 Determination of the velocity constant of hydrolysis of an ester/ionic reaction in micellar media. 	
	Determination of the order of the saponification of ethyl acetate with NaOH.	
	 Determine the temperature coefficient and activation energy of Methyl acetate with NaOH. 	
	 Find out the rate constant and order of the reaction between H₂O₂ and HCl 	
	Find out the heat of solution of a substance (Oxalic acid) by solubility method.	
	Determine the solubility of an organic acid at 40 °C and at a temperature lower than the room temperature.	

- Vogels Text book of Quantitative Analysis revised, J. Bessett, R.C. Denney, G.H. Jellery and J. Mendhan ELBS
- 2. Experimental Inorganic Chemistry by Mounir A, Malati, Horwood series in Chemical Science (Horwood publishing Chichester) 1999.
- 3. Inorganic Experiments, J. Derexwoolings VCH
- 4. Microscale Inorganic Chemistry, Z. Scafran, R.M. Pike and M.M. Singh Wiley.
- 5. Practical Inorganic Chemistry, G. Marrand, B.W. Rockett, Van Nostrand.
- 6. The systematic identification of Organic Compounds, R.L. Shringer and D.Y. Curlin.
- 7. Qualitative Analysis, R.A. Day, Jr. and A.L. Underwood, Prentice Hall.
- 8. Basic concept of Analysis chemistry, S.M. Chopkar, Wiley Bastern.
- 9. Synthesis and characterization of Inorganic compounds, W.L. Jolly, Prentice Hall.
- 10. Systematic Qualitative Organic Analysis, H. Middeton, Adward Arnoid.
- 11. Handbook of Organic Analysis Qualitative and Quantitative, H. Clark, Adward Ar.
- 12. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 13. Practical Physical Chemistry, A.M. James and F.E. Prichand, Longman.
- 14. Findley's Practical Physical Chemistry revised, B.P. Levitt, Longman.
- 15. Experimental Physical Chemistry, R.C. Das and Bebera, Tata Mc Grawhill.
- 16. Senior Practical Physical Chemistry, B.D. Khosla and V.S. Barg (R. Chand and Co., Delhi)
- 17. Experimental Physical Chemistry by D.P. Shoemaker Mc Grawhill, 7th Edition 2003.
- 18. Experiments in Chemistry, D.V. Jahagirdar, Himalaya Publishing House.
- 19. Practical Physical Chemistry, B. Vishwanathan and P.S. Raghwan, Viva Books.

20. General Chemistry Experiments, Anil J Elias, University Press (2002)

Academic Year 4th [Semester VIII] BACHELOR			Year-FOURTH 8	Semester-EIGHTH(VIII)	
HON	OURS / BACHE	LOR HONOURS RESEARCH			
/MA	STERS Year1st [Semester I] in CHEMISTRY			
B02080	B020801T Paper-I (Theory) INORGANIC CHEMISTRY-II				
CR	EDITS=4	COMPULSORY			
MAXI	MARKS:100	MIN	MIN PASSING MARKS:33		
		TOTAL NUMBER OF L	ECTURES=50		
UNIT	NIT TOPICS		No of Lectures		
Ī	Types, routes of synthesis, stability, decomposition pathways and polarity of M-C bond, organocopper in organic synthesis.			ond, 08	
11		al π-Complexes-		12	

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

	Transition metal π-complexes with unsaturated organic molecules, alkenes, alkynes, dienyl and arene complexes preparations, properties, nature of bonding and structural features.	
III	Compounds of Transition metal-Carbon Multiple Bonds- Alkylidenes, Alkylidynes, low valent carbenes and carbynes-synthesis, nature of bond, structural characteristics, nucleophilic and electrophilic reactions on the ligands	10
IV	Homogeneous Catalysis- Homogeneous catalytic hydrogenation, Zeigler-Natta polymerization of olefins. Waker Process, hydrocarbanylation of olefins, oxopalladation reactions, activation of C-H bond.	10
V	Fluxional Organometallic Compounds- Fluxionality and dynamic equilibria in compounds such as n ² -olefins and n ³ -allyl and dienyl complexes.	10

B020802T

- 1. Advanced Inorganic Chemistry, F. A. Cotton and G. Wilkinson, John Wiley
- 2. Inorganic Chemistry, J. E. Huheey, Ellen A. Keiter, Richard L. Keiter, Addison Wesley Longman (Singapore) Pvt. Ltd.
- 3. Chemistry of the Elements, N. N. Greenwood and A. Eamshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A. B. P. Lever, Elsevier
- 5. Magnetochemistry, R. L. Carlin, Springer Verlag
- 6. Modern Spectroscopy, J. M. Hollas, John Wiley.
- 7. Chemical Applications of Group Theory, F. A. Cotton.
- 8. Symmetry and Group theory: Some chemical applications, Ramashankar and Suresh Ameta, Himanshu Publications, Udaipur, Delhi.

9. K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New Age Paper-II (Theory) ORGANIC CHEMISTRY-II

BUZU	1021	Paper-II (Theory) ORGANIC Chemotri-II	
CRI	EDITS=4	COMPULSORY	
	ARKS:100	MIN PASSING MARKS:33	
		TOTAL NUMBER OF LECTURES=50	
UNIT		TOPICS	No of
0			Lectures
1	Molecular R	earrangements-	10
•	Pinacole-Pin	acolone rearrangement, Wagner-Meerwein rearrangement, Wolff	
	rearrangeme	nt. Demianov rearrangement, Dienone-Phenol rearrangement, Beckmann	
	rearrangeme	nt, Hofmann rearrangement, Curtius rearrangement, Lossen rearrangement,	
	Schmidt read	tion and Baeyer-Villiger rearrangement.	
II	Photochemi	cal Reactions-	10
	Interaction of	electromagnetic radiation with matter, types of excitations, Jablonski diagram,	
	fate of excited	d molecule, quantum yield, transfer of excitation energy, actinometry.	
		of rate constants and life times of reactive energy states, determination of	
		s of reactions.	40
Ш	Photochemis	stry of Carbonyl Compounds-	10
		r reactions of carbonyl compounds- saturated, cyclic and acyclic β,γ-	
	unsaturated a	and α, β- unsaturated compounds.	
	Intramolecula	r cyclo- addition reaction-dimerization and oxetane formation.	
IV	Photochemis	stry of Alkenes-	12
		r reaction of the olefinic bonds, geometrical isomerism, cyclisation reaction.	
		ent of 1,4 and 1,5 -dienes.	00
V		stry of Aromatic Compounds-	08
	Isomerisation	, additions and substitution reaction.	

Recommended Books:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2 nd edition, Oxford University Press, 2012.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Queto pupolar

6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Drs., Inc. 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited. 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley. 9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Edition, 2019 10. Mukherji, Singh, Kapoor, Organic Chemistry, volume 1,2 and 3, 2014, New Age International. 11. Geeta Rani, General Organic Chemistry, Manakin press 12. Arun Bahl & B S Bahl, Advanced Organic Chemistry, S. Chand Publishing Co. B020803T Paper-III (Theory) PHYSICAL CHEMISTRY-II CREDITS=4 COMPULSORY MAX MARKS:100 MIN PASSING MARKS:33 TOTAL NUMBER OF LECTURES=50 UNIT TOPICS No. of **LECTURES** Ī Introduction to Exact Quantum Mechanical Results 10 The Schrodinger equation and the postulates of quantum mechanics. Hermitian operators, normalization, orthogonality, Discussion of solutions of the Schrodinger equation to some model systems viz., particle in a box, the harmonic oscillator, the rigid rotor. ĪĪ Angular Momentum 10 Ordinary angular momentum, generalized angular momentum, eigenfunctions, for angular momentum, eigenvalues of angular momentum, operator using ladder operators, addition of angular momenta, spin, antisymmetry and Pauli exclusion principle. III **Electronic Structure of Atoms** 10 Russell-Saunders terms and coupling schemes, Slater-Condon parameters, term separation energies of the pn configuration, term separation energies for the dn configuration, magnetic effects spin-orbit coupling and Zeeman splitting, introduction to the methods of self-consistent field, the virial theorem. ĪV Approximate Methods 10 The variation theorem, linear variation principle. Perturbation theory (first order and nondegenerate). Applications of variation method and perturbation theory of the Hydrogen atom. ٧ Molecular Orbital Theory 10 Huckel theory of conjugated systems, Bond order and charge density calculations, Applications to ethylene, butadiene, cyclopropenyl cation/anion, cyclobutadiene, benzene, etc. Recommended Books: 1. Puri Sharma Pathania, Advance Physical Chemistry. 2. Molecular quantum Mechanics by P.W. Atkins Oxford University Press, Oxford New York 3. Quantum Chemistry, Ira N. Levine Pearson 4. Advanced Quantum Chemistry, R K Prasad, New Age Publication 5. Quantum Chemistry, Donald A Mcquarrie, Viva Publication B020804T Paper-IV (Theory) APPLICATION OF SPECTROSCOPY CREDITS=4 OPTIONAL/ELECTIVE MAX MARKS:100 MIN PASSING MARKS:33 TOTAL NUMBER OF LECTURES=50 UNIT **TOPICS** No of Lectures 1 UV-Visible spectroscopy-10 UV-Visible spectroscopy: Basic principles, application of UV-Visible spectroscopy to organic structure elucidation, Woodward- Fisher rules. Ī IR Spectroscopy-10 IR-Spectroscopy: Basic Principles characteristic frequencies of common functional groups, application to organic and inorganic compounds.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

NMR spectroscopy-

Ш

Super Planda

	Basic principles, introduction to FT NMR techniques, Spectral parameters-Intensity, chemical shift, multiplicity, coupling constant, structure determination of organic compounds by ¹HNMR spectra and ¹³C NMR Assignment of chemical shifts of common organic compounds and functional groups: Introduction to multinuclear NMR of common hetero atoms present in organic compounds.	
IV	Mass spectrometry- Basic principles, techniques of ion production and ion and daughter ions, molecular ion and isotope abundance, nitrogen rule energetics of fragmentation. Metastable ions, common fragmentation pathways-fragmentation of common chemical classes. Mc Lafferty rearrangement. Structural elucidation. Applications of IR, NMR and Mass spectroscopy for structure elucidation of organic compounds.	10
V	ESR Spectroscopy- Electron spin resonance: g value, hyperfine structure, ESR of hydrogen atom, free radicals,ESR of solids, ESR of simple free radicals in solutions, Spin densities, spin polarisation, anisotropy of Zeeman and Hyperfine interactions.	10

- Silversteine and Basser, Spectrometric Identification of Organic Compounds, Willey.
- 2. Organic Spectroscopy, P.S. Kalsi, New Age International (P) Limited.
- 3. Spectroscopy of Organic Compounds, Pavia, Mery Finch Publication.
- 4. Cotton, F.A, Wilkinson, G and Gaus, P. L, Basic Inorganic Chemistry, 3 rd Edition, Wiley 1995
- Lee, J. D. Concise Inorganic Chemistry 4 th Edition ELBS, 1977
- 6. Clayden, J., Greeves, N., Warren, S., Organic Chemistry, Second edition, Oxford University Press 2012.
- 7. Silverstein, R. M., Bassler, G. C., Morrill, T. C. Spectrometric Identification of Organic Compounds, John Wiley and Sons, INC, Fifth edition.
- 8. Pavia, D. L. et al. Introduction to Spectroscopy, 5th Ed. Cengage Learning India Ed.
- 9. Willard, H.H. et al.: Instrumental Methods of Analysis, 7th Ed. Wordsworth Publishing Company, Belmont, California, USA,
- 10. Christian, G.D. Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
- 11. Harris, D.C.: Exploring Chemical Analysis, 9th Ed. New York, W.H. Freeman, 2016.
- 12. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age International Publisher, 2009.
- 13. Mukherji, Singh, Kapoor, Organic Chemistry, Vol 1 and 2. New Age International 2014
- 14. R L Madan, Chemistry for Degree Students, S Chand Publishing Co.
- 15. Y. R. Sharma, ELEMENTARY ORGANIC SPECTROSCOPY VOL 4. S Chand
- 16. Gurdeep Raj, Advanced Physical Chemistry, Krishna Publishing House
- 17. K. L. Kapoor, A Textbook of Physical Chemistry Quantum Chemistry and Molecular Spectroscopy, Volume 4, Macmillan

B02080	5T	Paper-V (Theory) ENVIRONMENTAL CHEMISTRY	
CREDITS=4		OPTIONAL/ELECTIVE	
MAX	MARKS:100	MIN PASSING MARKS:33	
		TOTAL NUMBER OF LECTURES=50	
UNIT		TOPICS	No of
			Lectures

UNIT	TOPICS	No of Lectures
I	Introduction to Environmental Chemistry- Concept and scope of environmental chemistry, Environmental terminology and nomenclatures, Environmental segments.	10
11	The natural cycles of environment (Hydrological, Oxygen, Nitrogen, Carbon, Sulphur).	08
111	Chemical Toxicology- Toxic chemicals in the environments, Impact of toxic chemicals on enzymes, Biochemical effects of arsenic, cadmium, lead, mercury, carbon monoxide, nitrogen oxides, sulphur oxides.	12
IV	Air Pollution- Particulates, Aerosols, SO _x , NO _x , CO _x and hydrocarbon, Photochemical smog, Air Quality Standards.	10
V	Water Pollution-	10

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

	Water-quality parameters and standards: physical and chemical parameters, Dissolved	
	oxygen, BOD, COD, Total organic carbon, Total nitrogen, Total sulphur, Total	
Recomi	phosphorusand chlorine, chemical separation (Pb, As, Hg). nended Books:	
1.		
2.	Environmental Chemistry, S.E. Manahan, Lewis Publishers.	
3.	Environmental Chemistry, Sharma & Kaur, Krishna Publishers. Environmental Chemistry, A.K. De, Wiley Eastern.	
4.	Water Pollution, Shafqat Alauddin, Akhand Publishing House, India	
	Environmental Pollution Analysis, S.M. Khopkar, Wiley Eastern.	
	Standard method of Chemicals Analysis, F.J. Welcher Vol. III. Van Nostrand Reinhold Co.	,
7.	Environment Toxicology. Ed. J. Rose, Gordon and Breach Science Publications.	
8.	Elemental Analysis of Airborne Particles. Ed. S. Landsberger and M. Creatchman, Gordon a	nd Broach Scions
	Publication.	nd breach Scienc
9.	Environmental Chemistry, C. Baird, W.H. Freeman.	
E	3020806P Paper-VI (Practical) CHEMISTRY PRACTICAL	
	CREDITS=4 COMPULSORY	
	Com Cook!	
	milit i 7700ii to iii 711	18:33
UNIT	TOTAL NUMBER OF LECTURES=90	
OIVII	TOPICS	No of
	INODOANIO OUTINOTONI	Lectures
ı	INORGANIC CHEMISTRY	30
	Preparation of Coordination Complexes and their studies by IR and magnetic	
	susceptibility measurements.	
	i. VO(acac) ₂ ii. K ₃ [Fe(C ₂ O ₄) ₃] iii. Prussian Blue iv. [Cu(NH ₃) ₄]SO ₄ .H ₂ O	
	v. Na[Cr(NH ₃) ₂ (SCN) ₄] vi. [Co(Py) ₂ Cl ₂]	
	vii. [Ni(dmg) ₂] viii. [Ni(NH ₃) ₆]Cl ₂	
	Quantitative separation and determination of the following pairs of metal ions using and volumetric methods.	
	gravimetric and volumetric methods	
	i. Ni ²⁺ (gravimetrically) and Cu ²⁺ (Volumetrically) ii. Ba ²⁺ (gravimetrically) and Cu ²⁺ (Volumetrically)	
	iii. Fe ³⁺ (gravimetrically) and Cu ²⁺ (Volumetrically)	
	iv. Mg ²⁺ (gravimetrically) and Ca ²⁺ (Volumetrically)	
li .	ORGANIC CHEMISTRY	20
"	ORGANIC CHEMISTRY	30
	1 Separation and identification of organic compounds using chemical methods	
	from binary mixtures namely solid-solid and solid -liquid.	
1	Preparation of various organic compounds involving two or three steps	,
- 1	employing different reactions viz. Aldol Condensation, reactions of enolate ions,	
	oxidation reactions, Cannizzaro reaction, Molecular rearrangement reactions	
	etc. with a view to give the student sufficient synthetic training in synthetic organic	
	chemistry	
- 1	Isolation of:	
	i. Casein from milk	
	ii. Caffeine from tea leaves	
	iii. Eugenol from doves	
III	PHYSICAL CHEMISTRY	30
	Find out the strength of the given ferrous ammonium sulphate (0.1N) by titrating	
1	it against potassium dichromate solution potentiometrically.	,
	2. Find out the strength of the mixture of halides by titrating it against AgNO ₃	
	solution potentiometrically.	
	Find out the composition of Ferric ion-Thiocyanate complex by Job's method	
- 1	using spectrophotometer.	

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

4. Titrate a solution of 0.1 N NaOH against 0.1 N HCl conductometrically.

using spectrophotometer.

1:

Japan Taranta

From Riverdon

- 1. Vogels Text book of Quantitative Analysis revised, J. Bessett, R.C. Denney, G.H. Jellery and J. Mendhan ELBS
- 2. Experimental Inorganic Chemistry by Mounir A, Malati, Horwood series in Chemical Science (Horwood publishing Chichester) 1999.
- Inorganic Experiments, J. Derexwoolings VCH
- 4. Microscale Inorganic Chemistry, Z. Scafran, R.M. Pike and M.M. Singh Wiley.
- 5. Practical Inorganic Chemistry, G. Marrand, B.W. Rockett, Van Nostrand.
- 6. The systematic Indentification of Organic Compounds, R.L. Shringer and D.Y. Curlin.
- 7. Qualitative Analysis, R.A. Day, Jr. and A.L. Underwood, Prentice Hall.
- 8. Basic concept of Analysis chemistry, S.M. Chopkar, Wiley Bastern.
- 9. Synthesis and characterization of Inorganic compounds, W.L. Jolly, Prentice Hall.
- 10. Systematic Qualitative Organic Analysis, H. Middeton, Adward Arnoid.
- 11. Handbook of Organic Analysis Qualitative and Quantitative, H. Clark, Adward Ar.
- 12. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 13. Practical Physical Chemistry, A.M. James and F.E. Prichand, Longman.
- 14. Findley's Practical Physical Chemistry revised, B.P. Levitt, Longman.
- 15. Experimental Physical Chemistry, R.C. Das and Bebera, Tata Mc Grawhill.
- 16. Senior Practical Physical Chemistry, B.D. Khosla and V.S. Barg (R. Chand and Co., Delhi)
- 17. Experimental Physical Chemistry by D.P. Shoemaker Mc Grawhill, 7th Edition 2003.
- 18. Experiments in Chemistry, D.V. Jahagirdar, Himalaya Publishing House.
- 19. Practical Physical Chemistry, B. Vishwanathan and P.S. Raghwan, Viva Books.
- 20. General Chemistry Experiments, Anil J Elias, University Press (2002)
- 21. Experimental Physical Chemistry, V.D. Athawale, Parul Mathur, New Age International (P) Limited.
- 22. Systematic Experiment in chemistry, Arun Sethi, New Age International (P) Limited.
- 23. Experiments in Physical chemistry, J.C. Ghosh, Bharati Bhavan.
- 24. Advanced Practical Physical Chemistry, JB Yadav.

25. Practical Organic Chemistry, Mann and Saunders.

2. Inorganic Reaction Mechanism - J. O. Edwards.

MAST	ER of SCIENCE in CHEMISTRY	Ye	ar-FIFTH	Semester-	NINTH(IX)
	B020901T	Paper-I (Ti	neory) INORGAN	NIC REACTION MECHA	ANISM
	CREDITS=4		The second second	COMPULSORY	
	MAX MARKS:100			MIN MARKS:33	
	TOTA	L NUMBER C	F LECTURES=5	0	
UNIT	NIT TOPICS				No of Lectures
ı	Introduction to Inorganic Reaction Mechanism- Energy profile of a reaction, reaction reactivity of metal complexes, inert and labile complexes, kinetics application of valence bond and crystal field theories, factors affecting the lability of complexes.				15
II	Mechanism of Substitution Reactions in Octahedral Complexes- kinetics of octahedral substitution, acid hydrolysis, factors affecting acid hydrolysis, base hydrolysis conjugate base mechanism, direct and indirect evidences in favour of conjugate mechanism, anation reactions, reactions without metal ligand bond cleavage.				10
111	Mechanism of Substitution Reactions in Square Planar- Complexes Mechanism of substitution reactions in Pt(II) complexes, factors effecting the reactivity of square planar complexes, Trans-effect, theories of trans-effect and application of trans-effect to synthesis of complexes.			10	
IV	Electron Transfer (or Oxidation -Reduction) Reaction- Redox reactions, electron transfer reactions, mechanism of one electron transfer reactions, outer sphere type reactions, cross-reactions and Marcus-Hush theory, inner sphere type reactions.				
	nded Books:	C Dec	_		
morganic	Reaction Mechanism - F. Basolo &a	mp, G. Pearso	n.		

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

12

April

ale L

Frank Propode

	02T Paper-II (Theory) STERI	EOCHEMISTRY AND PERICYCLIC REAC	HONS
	CREDITS=4	COMPULSORY	110110
	MAX MARKS:100	MIN PASSING MARKS:33	}
	TOTAL NUMBER	OF LECTURES=50	
UNIT	TOPICS		No of Lectures
I	Stereoisomerism with chiral centre- Elements of symmetry, chirality, molecules w erythro isomers, Interconversion of Fischer, N configurational projections R/S and E/Z. Principle of axial and planar chirality, optical is optical activity due to intramolecular crowding	Newman and saw-horse projections and somerism of biphenyl, allenes and spiranes,	10
11	Topicity and pro stereoisomerism- Introduction, homotropic, enantiotropic and di Nomenclature and symbols. Cyclostereoisomerism- Configuration and conformations, stability of r decalines.	astereotropic atoms, group and faces.	10
III	Assymmetric Synthesis- Chemoselective, regioselective and stereospe Method of asymmetric synthesis- i. Enantioselective synthesis with chi Hydroboration with chiral boranes (IP- with chiral complex hydride (BINAL-H organometal complex (-) DAIB, 3-exo- ii. Enantioselective epoxidation/Hydro Sharpless epoxidation, enantioselectiv iii. Diastereoselective synthesis-	ral non racemic reagents and catalysts-CBH ₂), (IPC) ₂ BH, carbonyl group reduction, Chiral oxazaborolidines), chiral dimethylamino isoborneol. genation of alkene- re hydrogenation with [Rh(DIPAMP)]+ al aldehyde and achiral enolate and chiral	10
IV	Pericyclic Reactions- Characteristics and classification of pericyclic of Correlation, FMO and PMO methods for the state. i. Electrocyclic reactions- Study of linear conjugated dienest conrotatory and disrotatory motion. ii. Cycloadditions- iii. Supra and antara facial overlapper.	reactions, Conversion of M.O's symmetry, addy of following reactions- s and trienes having 4nπ and [4n+2] π	10

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M.Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2 nd edition, Oxford University Press, 2012.
- 6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Edition, 2019
- 10. Mukherji, Singh, Kapoor, Organic Chemistry, volume 1,2 and 3, 2014, New Age International. 11. Geeta Rani, General Organic Chemistry, Manakin press

12. Arun Bahl & B S Bahl, Advanced Organic Chemistry, S. Chand Publishing Company

	B020903T		Paper-III(Theory) BIOCHEMISTRY		
	CREDITS=4		OPTIONAL/ELECTIV	E	
	MAX MARKS:100		MIN PASSING MARKS	:33	
	TO	TAL NUMBER O	F LECTURES=50		
UNIT		TOPICS			
ı	Cell Structure and Functions			10	
	Structure of prokaryotic and eu comparison of plant and anima anabolism. ATP the biological	al cells. Overview of	cellular organelles and their functions, f metabolic processes-catabolism and		
II	Carbohydrates-	,		10	
	functions of important derivativ	es of monosacchar uctural polysacchar	f monosaccharides, structure and ides like glycosides, deoxy sugars, ides-cellulose and chitin. Storage		
Ш	Lipids-			10	
	Fatty acids, essential fatty acid glycerophospholipids, sphingol composition and function.		nction of triacylglycerols, pile acids, prostaglandins. Lipoproteins		
IV	Amino-acids, Peptides and P			12	
			peptides, amino acid sequencing. e for holding of secondary structure α -		
			nelix structure of collagen. Tertiary		
			acid metabolism-degradation and		
	biosynthesis of amino acids.				
٧	Nucleic Acids			80	
	Purine and pyrimidine bases of ribonucleic acid (RNA) and dec forces responsible for holding it	oxyribonucleic acids	ng via H-bonding structure of (DNA), double helix model of DNA and		
Recomme	ended Books:				
	rinciples of Biochemistry, A.L. Lehi	ninger Worth Publis	shers.		
2. B	iochemistry, L. Strayer, W.H. Free	man.			
	iochemistry, J. David Rawn, Neil P				
	iochemistry Voet and Voet, John V		John Wiley		
5. 0	Outlines of Biochemistry, E.E. Conn B020904T	and F.N. Stumpt,	Paper-IV(Theory) CHEMICAL DYNAI	AICS.	
	CREDITS=4		OPTIONAL/ELECTIVE		
	UKEDITO-4		OT HOUSELECTIVE	•	

TOTAL NUMBER OF LECTURES=50 TOPICS

Methods of determining rate laws, collision theory of reaction rates, steric factor, activated complex theory, Arrhenius equation and the activated complex theory; ionic reactions. Steady state kinetics, kinetic and thermodynamic control of reactions, treatment of

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024

MAX MARKS:100

Chemical Dynamics I-

unimolecular reactions

UNIT

١

No of Lectures 10

s proportion

MIN PASSING MARKS:33

II	Chemical Dynamics II-	10
	Dynamic chain (hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of	10
	etriene), general reatures of fast reactions, study of fast reactions by flow method	
	relaxation method, photochemical (hydrogen-bromine and hydrogen chlorine reactions	
	and oscillatory, reactions (Belousov-Zhabolinsky reaction), dynamics of unimolecular	
	reactions (Lindemann, Hinshelwood and Rice-Ramsperger- Kassel-Marcus (RRKM)	
III	theories of unimolecular reactions), Relaxation method. Molecular collisions-	
***		10
	Collision theory of reaction rates, Intermolecular potential and centrifugal barrier, impact	
	parameter, collision cross section and rate, energy threshold, opacity function and	
	reaction cross-section. Experimental probes of reactive collisions: IR chemiluminescence, laser-induced, fluorescence.	
IV	Kinetics of Complex reactions-	40
	Opposing or reversible reactions, kinetics of consecutive reactions, Kinetics of Chain	10
	reactions, Kinetics of chain and branched chain reaction, Kinetics of fast reactions	
٧	Kinetics of reaction in solution-	10
	Diffusion-controlled reaction in solution, Debye-Smoluchowski equation, Influence of	10
	solvent on rates of reaction, Influence of ionic strength on rates of reaction, Molecular	,
	reaction dynamics	

- 1. P.W. Atkins, Physical Chemistry, Oxford University Press, New York.
- 2. S. Glasston, Physical Chemistry, Nostrand.
- 3. Advance Physical Chemistry (Vol-1,2,3,4), K.L. Kapoor, MacMillan, India
- 4. Puri Sharma Pathania, Advance Physical Chemistry.
- 5. Chemical Kinetics, K J Ladler, Mc Graw Hill
- 6. Kinetics and Mechanism of Chemical Transformation, J Rajaraman & J Kuriacose, Mc Millan

7. Physical Chemistry, Ira N. Levine.

	B020905P Paper-V(PRACTICAL) CHEMISTRY PRACT	ICAL	
	CREDITS=4 COMPULSORY		
	MAX MARKS:100 MIN PASSING MARKS:3		
	TOTAL NUMBER OF LECTURES/LABS=90		
Α	INORGANIC CHEMISTRY	30	
	1. Preparation of selected inorganic compounds and structural elucidation on the basis of	f	
	given spectra (IR, ESR and MS) Selection can be made from		
	the following-		
	a. Sodium amide		
	b. Dichlorophenyl borane PhBCl ₂		
	c. Ammonium hexachorostannate (NH ₄) ₂ SnCl ₆		
	d. Trichlorodiphenyl antimony (V) hydrate		
	e. Sodium Tetrathionate, Na ₂ S ₄ O ₆		
	f. Metal acetylacetonate.		
	g. Preparation of Fe (II) Chloride.		
	 h. Phosphine Ph₃P and its transition metal complexes. 		
	i. Ferrocene		
	j. Copper Glycine Complex		
	2. Spectrophotometric Determinations		
	a. Mn/Cr/V in steel sample		
	 b. Ni/Mo/W/V/U/ by extractive spectrophotometric method 		
 c. F⁻/NO₂⁻/PO₄³⁻ in water in colorimetric method d. Iron-phenanthroline complex: Jobs method of continuous variations. 		,	
	e. Zr-Alizarin Red-S complex: Mole ratio method.		
	 Cu-Ethylenediamine complex: Slope-Ratio Method. 		
В	ORGANIC CHEMISTRY	30	

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Lin John

My

majo de

	Separation and identification of organic compounds using chemical methods fromorganic mixtures containing up to three components. Proposition of organic compounds involving accurate tagget.				
	Preparation of organic compounds involving several stages.				
	Verification of Lambert Beer's Law using bromocresol green reagent. Stimation of carbohydrates, protein, amino poids, according said, blood.				
	 Estimation of carbohydrates, protein, amino acids, ascorbic acid, blood cholesterol andaspirin in APC tablets by UV-visible Spectrophotometric method. 				
С	PHYSICAL CHEMISTRY	30			
	Determination of solubility and solubility product of sparingly				
	soluble salts (e.g. PbSO ₄ , BaSO ₄) conductometrically.				
	Determination of the strength of strong and weak acids in a				
	given mixture conductometrically.				
	Determination of the strength of strong and weak acids in a				
	given mixture using potentiometer.				
	Find the temperature coefficient for a given liquid by				
	viscometry.				
	5. Test the validity of Beer's law for a solution of CuSO ₄ and				
	also determine λ max.				
	6. Scan a spectral absorption curve of a given substance				
	using spectrophotometer and also determine the wavelength of maximum absorption.				
MASTER	of SCIENCE in CHEMISTRY Year-FIFTH Semester-TEN	ITU/Y\			
B0210					
DUZ 10	CREDITS=4 OPTIONAL/ELECTIV				
	MAX MARKS:100 MIN PASSING MARKS:33				
	TOTAL NUMBER OF LECTURES-50				
HAUT	TOTAL NUMBER OF LECTURES=50	No of			
UNIT	TOTAL NUMBER OF LECTURES=50 TOPICS	No of			
	TOPICS	Lectures			
UNIT	NMR Spectroscopy-				
	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double	Lectures			
	TOPICS NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear	Lectures			
	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double	Lectures			
	TOPICS NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR	Lectures			
	TOPICS NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of	Lectures			
	TOPICS NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of	Lectures			
I	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending	Lectures 12			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types).	Lectures 12 08			
I	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy-	Lectures 12			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors	Lectures 12 08			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes	Lectures 12 08			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic	Lectures 12 08			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic effects (the g-value and the hyperfine couplings); Structural applications to transition	Lectures 12 08			
111	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic effects (the g-value and the hyperfine couplings); Structural applications to transition metal complexes.	12 08 15			
1	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic effects (the g-value and the hyperfine couplings); Structural applications to transition metal complexes. Mossbauer Spectroscopy-	Lectures 12 08			
111	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic effects (the g-value and the hyperfine couplings); Structural applications to transition metal complexes. Mossbauer Spectroscopy- Basic principles, spectral parameters and spectrum display. Application of the technique	12 08 15			
111	NMR Spectroscopy- (i) Use of Chemical shifts and spin-spin couplings for structural determination, (ii) Double resonance, and Dynamic processes in NMR, (iii) Decoupling phenomenon, Nuclear Overhauser Effect, DEPT spectra and structural applications in ¹³ C NMR, (iv) Use of Chemicals as NMR auxiliary reagents (shift reagents and relaxation reagents) (v) ¹ H NMR of paramagnetic substances. (vi) NMR of Metal nuclei. Vibrational Spectroscopy- Applications of vibrational spectroscopy in investigating the stretching and bending modes of molecules (AB ₃ and AB ₄ types). Electron Spin Resonance Spectroscopy- Basic principle, Hyperfine Splitting (isotropic systems); the g-value and the factors affecting thereof; interactions affecting electron energies in paramagnetic complexes (Zero-field splitting and Kramer's degeneracy); Electron-electron interactions, anisotropic effects (the g-value and the hyperfine couplings); Structural applications to transition metal complexes. Mossbauer Spectroscopy-	12 08 15			

Books Recommended:

- 1. E. A. V. Ebsworth, D. W. H. Rankin and S. Cradock, Structural Methods in Inorganic Chemistry, 1st Edn.(1987), Blackwell Scientific Publications, Oxford, London.
- 2. R. S. Drago, Physical Methods in Chemistry, International Edition (1992), Affiliated EastWest Press, New Delhi.
- 3. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edn. (1986), John Wiley & Sons, New York.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

7200glas

Ruyadav

And Off

Un J

G. Aruld	p, Organic Spectroscopy, 3rd Edn. (1991), Macmillan, London. has, Molecular Structure and spectroscopy, Prentice Hall of Ind	ia Pvt. Ltd., New Delhi (2001)	-De
B02	1002T Paper-II(Theory) INORGANIC F		
	CREDITS=4	OPTIONAL/ELECTIVE	2
	MAX MARKS:100	MIN PASSING MARKS:3	<u> </u>
	TOTAL NUMBER OF LECTUI	KES=30	No of
UNIT	TOPICS		Lectures
I	Clusters and element-element bonds- Polyhedral boranes: Electron deficiency vs sufficiency. Types and IUPAC nomenclature. Wade's polyhedral skeleton electron pair theory (PSEPT). W. N. Lipscomb's styx rules and semi-topological structures of boranes. Equivalent and resonance structures. Wade's		
11	vs Lipscomb's methods of studying higher boranes. Heteroboranes- Types of heteroboranes with special reference to carboranes, structure, bonding and IUPAC nomenclature. Metallaboranes, Metallacarboranes, metal σ and μ bonded borane/carborane clusters. Resemblance of Metallaboranes/ Metallacarboranes with ferrocene and related compounds.		
III	Metal Clusters- Metal-metal bonds. Concept of quadrupolar bond and its comparison with a C-C bond; Types of metal clusters and multiplicity of M-M bonds. Simple and condensed metal carbonyl clusters. Applications of PSEPT and Wade's-Mingo's and Lauhr's rule over metal carbonyl clusters.		
IV	Inorganic Polymers:- Classification, Types of Inorganic Polymerization, Comparison with organic polymers, Boron-oxygen and boron-nitrogen polymers, silicones, coordination polymers, sulphur-nitrogen, sulphur-nitrogen-fluorine compounds, - binary and multicomponent systems, haemolytic inorganic systems.		
. F. A. Co . James E . N. N. Gr . Inorganio .Inorganio	tton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Edn. Huheey, Inorganic Chemistry, 4th Edn. (1993), Addison Wesle enwood and A. Earnshaw, Chemistry of the Elements, 2nd Edc Polymers, by James E. Mark, Harry R. Allcock, and Robert W. Polymeric and Composite Materials; by George Wypych 21003T Paper-III(Theory) BIO	ey Pub. Co., New York n. (1997), Butterworth Heineman	
	CREDITS=4	OPTIONAL/ELECTIVE	
	MAX MARKS:100	MIN PASSING MARKS:33	
	TOTAL NUMBER OF LEG	TURES=50	
UNIT	TOPICS		No of Lectures
ı	Metal lons in Biological System- Occurrence and availability of Inorganic elements in organisms, transport and storage of Inorganic elements, Dose response of an element, biological function of inorganic elements, beneficial and toxic elements, essential and trace metals.		10
11	Complexes of Biological Significance-		08

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Mo-containing Enzymes- Nitrogenase; Xanthine Oxidase, sulphite,

Metal Storage, Transport and Biomineralization-

Ш

I۷

biominerals.

Metalloenzymes-

Metal complexes of porphyrins and phthalocyanine, Vitamin B₁₂ and B₆; chlorophylls.

Sidrophore, phytosidrophores, ferretin, transferrin, hemosiderine, biomineralization, assembly of advanced materials e.g. calcium phosphate, calcium carbonate, iron

p Lan

Royadu

17

12

	Oxidase and Nitrate reductase and Iron-containing enzymes, cytochrome C oxidase, catalases, Peroxidases, cytochrome-p-450	
V	Transport and Function of Alkali and Alkaline Earth Metals- Roll of Alkali and alkaline earth metals in neuro sensation. Ion Channels, ion pumps, magnesium catalysis of phosphate, ubiquitous regulatory role of calcium.	10

- 1. Advanced Inorganic Chemistry, F. A. Cotton and G. Wilkinson, John Wiley
- 2. Inorganic Chemistry, J. E. Huheey, Ellen A. Keiter, Richard L. Keiter, Addison Wesley Longman (Singapore) Pvt. Ltd.
- 3. Chemistry of the Elements, N. N. Greenwood and A. Earnshow, Pergamon.
- 4. Inorganic Electronic Spectroscopy, A. B. P. Lever, Elsevier
- 5. Magnetochemistry, R. L. Carlin, Springer Verlag
- 6. Modern Spectroscopy, J. M. Hollas, John Wiley.
- 7. Chemical Applications of Group Theory, F. A. Cotton.
- 8. Symmetry and Group theory: Some chemical applications, Ramashankar and Suresh Ameta, Himanshu Publications, Udaipur, Delhi.
- 9. K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New Age

10. Inorganic Chemistry, D. E. Shriver, P. W. Atkins and C. H. L. Langford, Oxford

B021004T Paper-IV(Th		V(Theory) REAGENTS AND REACTIONS	
	CREDITS=4	OPTIONAL/ELECT	IVE
	MAX MARKS:100 MIN PASSING MAR		
	TOTAL NUMBE	R OF LECTURES=50	
UNIT	TO	PICS	No of
	" Will a ditt in which we have		Lectures
Regents in Organic Synthesis-		10	

UNIT	TOPICS	No of
	The state of the second	Lectures
1	Regents in Organic Synthesis- Use of following reagents in organic synthesis and functional group transformation (including stereochemistry where possible) Complex metal hydrides – NaBH ₄ , LiAlH ₄ , DIBAL, Lithium diisopropyl amide (LDA), Dicyclohexyl carb carbodiimide (DCC); Trimethylsilyl iodide; Tri n-butyltin hydride, Hydrazine and phenylhydrazine	10
II	Preparation and uses of following reagents in organic synthesis- Gilman's reagent, DEAD, DDQ, Nucleophilic heterocyclic carbenes (NHC), 1, 3- Dithiane (Reactivity Umpolung), Wilkinson Catalyst, Nitrogen, Sulphur and Phosphorus Ylides. Pd(0) complex in organic synthesis (Heck, Suzuki, Stille reactions)	10
III	Oxidation- Scopes of the following reagents with application and mechanism; SeO ₂ , Jones reagent, PCC, PDC, peracids, Swern, TEMPO, Des-Martin oxidation, Corey-Kim oxidation and iodobenzene diacetate	08
IV	Reduction- Scope, mechanism and stereochemistry of reduction with following reagents -Complex Metal hydrides, Diborane, diisoamylborane, 9-BBN, Birch reduction, Corey, Bakshi and Shibata (CBS) and Luche reduction.	10
V	Name reactions with mechanism and application in organic synthesis- i. Based on miscellaneous strategies- Acyloin Condensation, Bergmann cyclisation, Corey-Winter, Julia, Michael addition, Nazaro Peterson, Pauson-Khand reaction, Robinson annulations, Stetter, Reformatsky, Shapiro and Stork enamine, Woodword-Prevost hydroxylation, Wharton transportation and Wharton fragmentation reaction. ii. Based on multicomponent strategies- Biginelli, Passerini, Ugi and Mitsonubu reactions	12

Recommended Books:

- 1. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 4. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Ello Foot

Horn

- 5. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry, 2nd edition, Oxford University Press, 2012.
- 6. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 7. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 8. March, J. Advanced Organic Chemistry, Fourth edition, Wiley.
- 9. Bariyar and Goyal, Organic Chemistry-II, Krishna Prakashan Media, Meerut, Third Edition, 2019
- 10. Mukherji, Singh, Kapoor, Organic Chemistry, volume 1,2 and 3, 2014, New Age International.
- 11. Geeta Rani, General Organic Chemistry, Manakin press
- 12. Arun Bahl & B S Bahl, Advanced Organic Chemistry, S. Chand Publishing Co.

CREDITS=4 OPTIONAL/ELECTIV		VE	
MAX MARKS:100 MIN PASSING MARKS		S:33	
	TOTAL NUMBER OF LE	ECTURES=50	
UNIT	TOPICS		No of
			Lectures
1	Disconnection Approach- General introduction to synthons and Synthetic equivalents, Disconnections, (C-C, C-S, C-O,bonds).		
II	Protection and Deprotection of Groups- Principle of protection and deprotection of alcohols, 1,3-diols, amines, carbonyl and carboxyl groups in organic synthesis		
III	One Group C-C_Disconnections- Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis.		80
IV	Two Group C-C Disconnections- Diels-Alder reaction 1,3-difunctionalized compounds, α , β -unsaturated carbonyl compounds, control in carbonyl condensations, 1,5-difunctionalized compounds. Micheal addition and Robinson annelation		
V	Ring synthesis Saturated heterocycles, synthesis of 3-4, 5- and 6-membered rings, aromatic heterocycles in organic synthesis		
VI	Synthesis of Some complex Molecules- Application of the above in the synthesis of following compounds; Camphor, Longifoline, Cortisone, Reserpine and Vitamin D.		

Paper-V(Theory) STRATEGIES IN ORGANIC SYNTHESIS

Recommended Books:

B021005T

- Modern synthetic Reactions, H.O. House, W.A. Benjamin.
- Some Modern Methods of Organic Synthesis, W. Carruthers Cambridge Univ. Press.
- 3. Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March. John Wiley.
- 4. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional.
- 5. Advanced Organic Chemistry Part B, F.A. Carey and R.L. Sundherg, Plenum Press.
- 6. Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey Elevier.

B0	B021006T Paper-VI (Theory) N		ory) MEDICINAL CHEMISTRY		
	CREDITS=4 OPTIONAL/ELECTI		IVE		
	MAX MARKS:100 MIN PASSING MARK			(S:33	
	mi de mi	TOTAL	NUMBER OF LE	CTURES=50	
UNIT	TODIOO		No of Lectures		
	Introduction of drug absorption, disposition, elimination using pharmacokinetics, SAR, important pharmacokinetic parameters in defining drug disposition in therapeutics.		06		
II	Antineoplastic Ag	gents- er chemotherapy r. Synthesis of m nd 6-mercaptopu	, role of alkylating a	gents and anti-metabolites in rolphosphamide, melphalan, opment in cancer chemotherapy,	08

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Dr. Han

Took sup day

III	Cardiovascular Drug- Introduction, cardiovascular diseases, classification of cardiovascular drugs and their uses. Synthesis of amyl nitrate, aspirin, diltiazem. quinidine, verapamil, methyldopa, atenolol, oxprenolol, minoxidil, tocanideHCl, dalvastatin, fenofibrate and amlodipine.	08
IV	Local Anti-Infective Drugs- Introduction and general mode of action. Synthesis of sulphonamides, furazolidone, nalidixic acid, ciprofloxacin, norfloxacin, dapsone, amino salicylic acid, isoniazid, ethionamide, ethambutol, fluconazole, econazole, griseofulvin, chloroquine and primaguine.	08
V	Psychoactive Drugs-The Chemotherapy of Mind- Introduction, neurotransmitters, CNS depressant, general anaesthetics, mode of action of hypnotics, sedatives, antianxiety drugs, Antipsychotic drug-the neuroleptics, antidepressants, study of diazepam, oxazepam, clonazepam, alprazolam, phenytoin, ethosuximide, trimethadione barbiturates, thiopental sodium glutethimide, benzodiazepines and buspirone	12
VI	Antibiotics Cell wall biosynthesis, inhibitors, β-lactam rings, antibiotics inhibiting protein synthesis. Study of penicillin V, ampicillin, amoxycillin, chloramphenicol, cephalosporin, chlotetracycline, methacycline, azithromycin and cefuroxime.	08

Introduction to Medical Chemistry, A. Gringuage, Wiley-VCH. 1.

- Wilson and Gisvold's Text Book of Organic Medicinal and Pharmaceutical Chemistry. Ed. Robert, F. Dorge. 2.
- An introduction of Drug Design, S.S. Pandeya and J.R. Dimmock, New Age International. 3.
- Burger's Medicinal chemistry and Drug Discovery, Vol. I, (Chapter 9 Ed. M.E. Wolff, John Wiley. 4.
- Goodman and Gilman's Pharmacological Basis of therapeutics, Mc Graw-Hill. 5.
- The Organic Chemistry of Drug Design and Drug Action. R.B. Silvermann, Academic Press. 6.

Strategies for Organic Drug Synthesis and Design. D. Lednicer, John Wiley.

1.	Strategies for Orga	inic brug synthesis and besign	eory) SOLID STATE CHEMISTRY	
B02				
502	B021007T Paper-VII(Theory) SOLID STATE CHEMISTRY CREDITS=4 OPTIONAL/ELECTIV			/E
	MAX MARKS:100 MIN PASSING MARKS			
	WAX WA	TOTAL NUMBER OF	LECTURES=50	
				No of
UNIT	UNIT TOPICS		Lectures	
	Solid State Reac	tions-		08
, •	General Principles for reaction between two solids: Reactions conditions, structural			

UNII	101100	Lectures
, i	Solid State Reactions- General Principles for reaction between two solids: Reactions conditions, structural considerations, surface area, reactivity, Kinetics of solids state reactions.	08
II	Basic concept of Symmetry in crystal systems and crystal lattice- Unit cell and Crystal lattices, brief concept of molecular symmetry, concept of Symmetry in crystal systems, Herman Mauguin notation for symmetry elements in crystal systems, representation of screw axis and glide planes, restriction of symmetry elements in crystals systems, representation of lattice planes and directions, Bravias lattices, concept of Miller indices and Weiss indices,	10
III	Crystal Defects and Non-Stoichiometry- Perfect and imperfect crystals, intrinsic and extrinsic defects points defects, vacancies- Schottky defects and Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, non-stoichiometry and defects.	12
IV	Electronic, optical properties and Band Theory- Metals, insulators and semiconductors, electronic structure of solids-band theory, band structure of metals, insulators and semiconductors, Intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, optical properties, Optical reflectance, Photoconduction, photoelectric effect.	10
V	X-Ray diffractions- Bragg condition, Miller indices, Laue method, Bragg method of X-ray structural analysis of crystals, index reflections. Structure of simple lattices and X-ray intensities.	10

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

- 1. Solid State Chemistry and its Applications, A.R. West, Plenum.
- 2. Principles of the Solid State H.V. Keer Wiley Easter.
- 3. Solid State Chemistry, N.B. Hannay.
- 4. Solid State Chemistry, D.K. Chakrabarty, New Age International.

1. Colle Clate Orientally, B.R. Orientabarty, 11017 (go international				
B021008T	Paper-VIII(Theory) ELECTROCHEMISTRY			
CREDITS=4	OPTIONAL/ELECTIVE			
MAX MARKS:100 MIN PASSING MARKS:33				
TOTAL NUMBER OF LECTURES-50				

UNIT	TOPICS	No of Lectures
I	Electrochemistry I- Basic concept of electrochemistry, Transport phenomenon determination of transport number, Kohlrausch's law and its application, Ostwald's dilution law.	10
II	Electrochemistry II- Arrhenius concept of electrolytes and its limitation for electrolytic dissociation, Role of solvent and inter-ionic forces, Activities and activity coefficients, determination of activity coefficients, mean activity and molality, molality of electrolyte, mean molar activity coefficient, Fugacity and its determination for the gas (Graphical Method and Generalised Method), Variation of fugacity with P and T. Duhem-Margules equation and its application to the total Pressure (KONOVALOV's I & II law).	10
111	Electrochemistry III- Properties of ionic cloud, activity coefficients from Debye-Huckel theory of activity of strong electrolytes, Limiting law and its verification, Debye-Huckel Theory to more concentrated solutions, Partial molar quantities of electrolytic solutions, determination of partial molar volume	10
IV	Corrosion- Types of corrosion, electrochemical theories of corrosion, kinetics of corrosion (corrosion current and corrosion potential), corrosion measurements (weight loss, OCP measurement, and polarization methods), passivity and its breakdown, corrosion prevention techniques (electrochemical, inhibitor, and coating methods).	10
V	Electrochemical techniques- Impedance technique-its application for studying electrode kinetics and corrosion. Cyclic voltammetry: Instrumentation, current-potential relation applicable for Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV), interpretation of cyclic voltammograms and parameters obtainable from voltammograms.	10

Recommended Books:

- 1. Physical Chemistry P.W. Atkins, ELBS.
- 2. Modern Electrochemistry Vol. I and Vol. II, J.O.M. Bockris and A.K.N. Reddy, Plenum.
- 3. Physical Chemistry, Puri, Sharma & Pathania

	B021009T	Paper	-IX(Theory) POLYMER CHEMISTR	RY
	CREDITS=4		OPTIONAL/ELECTI	VE
	MAX MARKS:10	0	MIN PASSING MARK	S:33
	The state of the s	TOTAL NUMBER OF I	ECTURES=50	
UNIT		TOPICS		No of Lectures
1,	polymers, Classification of Polymerization, Chain grow	polymers, Polymerization th (addition) polymerizati	inear, branched and network; Step growth (Condensation) on, radical chain-ionic and co- comogeneous and heterogeneous	10
II	Polymer Characterization	-		10

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Maria

Son Di

Total Pay

	Molecular weight of polymers: Polydispersity and average molecular weight concept of polymers (Number, weight and viscosity average molecular weights). Different methods of measurement of molecular weight of polymers. Analysis and testing of polymers. Chemical analysis of polymers, spectroscopic methods, X-ray diffraction study. Microscopy. Thermal analysis of polymers.	
111	Crystalline Polymers- Crystalline polymers, configurations of crystalline polymer chains. Crystal structures and morphology of crystalline polymers, crystallization temperature (Tc) and melting temperature (Tm) of polymers and their relationship with glass transition temperature (Tg), factors effecting Tm and Tg.	10
IV	Polymer Processing- Plastics, elastomers and fibres compounding processing techniques calendaring die-casting, rotational casting film casting injection moulding. Blow moulding, extrusion moulding, foaming, reinforcing and fibre spinning.	10
V	Properties of Commercial Polymers- Polyethylene, polyvinyl chloride polyamides polyesters, phenolic resins. Epoxy resins and silicone polymers. Functional polymers, fire retarding polymers and electrically conducting polymers.	10

- 1. Textbook of Polymer Science, F.W. Billmeyer Jr. Wiley.
- 2. Physics and chemistry of Polymer, J.M.G. Cowie, Blackie Academic and Professional.
- 3. Polymer Science, V.R. Gowarker, N.V. Viswanathan and J. Sreedhar, Wiley-Eastern.
- 4. Functional Monomers and Polymers. K. Takemoto, Y. Inaki and R.M. Rttanbrite.

5. Contemporary polymer Chemistry, H.R. Alcock and F.W. Lambe, Prentice Hall.

B021	010P	Paper-X (Practical) CHEMISTRY PRACTICAL		
		CREDITS=4	COMPULSORY	
		MAX MARKS:100	MIN PASSING MARKS	:33
		TOTAL NUMBER OF LE	CTURES/LABS=90	
UNIT		TOPIC	S	No of
				Lectures
A.	INOR	SANIC CHEMISTRY		30
	1. Flam	e Photometric Determinations		
	i.	Sodium and Potassium when present together	ether.	
	ii.	Lithium/Calcium/Barium/Strontium		
	iii.	Cadmium and Magnesium in tap water		
	2. Chro	matographic Separations		
	i.	Nickel, Cobalt and Zinc.	,	
	ii.	Cadmium and Zinc		
	iii.	Zinc and Magnesium		
	3.Deterr	nination of copper in copper sulphate so	olution by spectrophotometer.	
В		IIC CHEMISTRY	·	30
	2.	Separation and identification of organic methods from organic mixtures containing solids, two solid & one liquid and one solid Preparation of organic compounds involving	up to three components namely three & two liquids. g several stages.	
		Isolation of lactose from milk, piperine from tobacco.		
		Applications of NMR spectroscopy (1H & Spectroscopy in structure determination of compounds.	forganic and biologically important	
С	PHYSICA	AL CHEMISTRY		30

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

Leve a

De Jack Corped

	 Applications of NMR spectroscopy (¹H & ¹³C), UV, IR and Mass Spectroscopy in structure determination of organic and biologically important compounds. 	
С	PHYSICAL CHEMISTRY	
	Synthesized polystyrene by bulk polymerization.	
	Synthesized polystyrene by solution/emulsion polymerization.	
	Calculate the molecular weight of a synthesized polystyrene in exercise (i and ii) by viscosity method.	
	 Potentiometric titration of a solution of Fe²⁺ against Cr₂O₇²⁻ and the determination of the redox potential of Fe²⁺/Fe³⁺ system. 	
	 Determine the strength of NaOH and NH₄OH in a given solution by titrating it against strong acid (HCI) conductometrically. 	

- 1. Vogels Text book of Quantitative Analysis revised, J. Bessett, R.C. Denney, G.H. Jellery and J. Mendhan ELBS
- 2. Experimental Inorganic Chemistry by Mounir A, Malati, Horwood series in Chemical Science (Horwood publishing Chichester) 1999.
- 3. Inorganic Experiments, J. Derexwoolings VCH
- 4. Microscale Inorganic Chemistry, Z. Scafran, R.M. Pike and M.M. Singh Wiley.
- 5. Practical Inorganic Chemistry, G. Marrand, B.W. Rockett, Van Nostrand.
- 6. The systematic Indentification of Organic Compounds, R.L. Shringer and D.Y. Curlin.
- 7. Qualitative Analysis, R.A. Day, Jr. and A.L. Underwood, Prentice Hall.
- 8. Basic concept of Analysis chemistry, S.M. Chopkar, Wiley Bastern.
- 9. Synthesis and characterization of Inorganic compounds, W.L. Jolly, Prentice Hall.
- 10. Systematic Qualitative Organic Analysis, H. Middeton, Adward Arnoid.
- 11. Handbook of Organic Analysis Qualitative and Quantitative, H. Clark, Adward Ar.
- 12. Vogel's Textbook of Practical Organic Chemistry, A.R. Tatchell, John Wiley.
- 13. Practical Physical Chemistry, A.M. James and F.E. Prichand, Longman.
- 14. Findley's Practical Physical Chemistry revised, B.P. Levitt, Longman.
- 15. Experimental Physical Chemistry, R.C. Das and Bebera, Tata Mc Grawhill.
- 16. Senior Practical Physical Chemistry, B.D. Khosla and V.S. Barg (R. Chand and Co., Delhi)
- 17. Experimental Physical Chemistry by D.P. Shoemaker Mc Grawhill, 7th Edition 2003.
- 18. Experiments in Chemistry, D.V. Jahagirdar, Himalaya Publishing House.
- 19. Practical Physical Chemistry, B. Vishwanathan and P.S. Raghwan, Viva Books.
- 20. General Chemistry Experiments, Anil J Elias, University Press (2002)
- 21. Experimental Physical Chemistry, V.D. Athawale, Parul Mathur, New Age International (P) Limited.

SYLLABUS FOR B.Sc. 4th year /M.Sc. (CHEMISTRY) /MSDU, AZAMGARH/2024-25

22. Systematic Experiment in chemistry, Arun Sethi, New Age International (P) Limited.

alr

Agen Howard

- Joseph Million