महाराजा सुहेल देव विश्वविद्यालय, आजमगढ़ Choice Based Credit System (C.B.C.S.)

4 YEARS UG (HONS.) PROGRAMME 4 YEARS UG (HONS. WITH RESEARCH) PROGRAMME M.Sc. PHYSICS TWO YEAR (SEMESTER SYSTEM)

COURSE STRUCTURE AND SYLLABUS

Effective from 2024-25

राष्ट्रीय शिक्षा नीति - 2020 आधारित Syllabus

<u>Semester Courses of 4th Year UG(Hons.)/ 4th Year UG(Hons. with</u> <u>Research)/M.Sc. PHYSICS Based on CBCS</u>

Course Objectives and Outcomes:

- To provide a supportive and cooperative environment to the students to impart systematic and core knowledge of the subject matter based on sound theoretical, experimental and computational foundation.
- To provide a course of the highest academic quality in various disciplines of Physics: Core/Optional/Elective/Allied courses in an atmosphere of relatively less number of specialized faculties, insufficient lab facilities, basic infrastructure and local geographical conditions so as to produce teachers and researchers and technical hands of high excellence to beat with frontiers of international repute.
- To develop transferable skills of critical discussion, solving complex, unseen and open ended problems.
- To develop transferable technical and teaching skills to the serve the human kind.
- To develop a temperament of working in an organized and time bound manner so as to achieve the academic/research target within given time line with all due consideration of practical realities.
- To motivate the students to know the scope and significance of Physics Education in the real world that the Physics is the most basic of all sciences which enables us to understand the nature, natural phenomenon and the governing laws at their most fundamental levels.
- To make the students realize to establish a Nation of scientifically and technically literate fellows with a rigid moral ground by contributing through their own developed skills and knowledge.
- Above all, to produce good human beings holding science and technology as tools ready to serve the world beyond all the boundaries.

4th Year UG(Hons.)/ 4th Year UG(Hons.with Research)/M.Sc. PHYSICS

(Effective from session 2024-2025)

The fourth year of undergraduate degree (Hons.) / undergraduate degree (With Hons. Research) degree consist of two Semesters in a year and M.Sc. PHYSICS Course consists of four Semesters (02 Semesters in each year). The Examinations of Semester-I and Semester-II will be held in the months of December and April, respectively. Each Semester Examination will consist of Theory Papers of that Semester as well as One Practical Examination (Lab). Each Theory paper will be of three hours duration and of 4 credits (Maximum Marks 75) and the Practical Examination will be of two hours (Maximum Marks 100). There will be 25% internal evaluation in theory as shown below:

25% Internal Assessment in Theory				
Attendance/Interaction	5 Marks			
Sessional Test	10 Marks			
Assignment	10 Marks			

Format of the Question Paper:

There will be Section-A of one Compulsory Question consisting of 10 parts of Very Short answer type question. Each part will have to be answered in about 50 words. Section-B will consist of eight short answer type questions .Any five questions from section –B will have to be attempted. Each question will have to be answered in about 200 words. Section-C will consist of five Long Answer type questions. Any two questions from Section-C will have to be attempted. Each question will have to be answered in about 500 words.

Note:

Four-year undergraduate degree (Hons.), Four-year undergraduate degree (Hons. with Research) and Postgraduate course outline

Eligibility:

1. For the four-year undergraduate (Hons.) and undergraduate (Hons. with Research) degree, in the fourth year, the student will select any one of the above two major subjects in undergraduate (which the student has compulsorily studied in the previous three years/six semesters) and will study the same subject in the seventh and eighth semesters as well. But for the Bachelor (Hons. with Research) degree, the student must have obtained 75% marks from the first to the sixth semester. For undergraduate (Hons. with Research) degree, student must choose one research project in place of optional paper choice in seventh and eighth semesters.

2. After three years of graduation, a student can take admission in Masters in any new subject (in which he is eligible as per the pre-requisites), but after one year of Masters/fourth year studies, he will not get any degree or diploma. He will get Masters Degree in that subject only after completing and passing two years.

3.After completing three years of undergraduate study, for a four year degree, the student will have to take fresh admission in Masters course in that subject which will be done on the available seats of Masters as per the admission process prevalent in the University.

Year	Semester	Category/Type of the Courses	Course Code	Paper Title	Theory / Practical	Credits
			B010701T	Mathematical Physics	Theoretical	4
			B010702T	Classical Mechanics	Theoretical	4
4 th Year			B010703T	Quantum Mechanics	Theoretical	4
UG (Hons.)/ 4 th Year	VII	Major/Compulsory	Optional	Choose any one of the following		
UG(Hon s.with			B010704T	(A) Analog & Digital Electronics	Theoretical	4
Researc h)/M.Sc. First Year			B010705T	(B) Experimental Techniques	Theoretical	4
			B010706P	General Lab	Practical	4
			B010801T	Classical Electrodynamics	Theoretical	4
		Major/Compulsory	B010802T	Statistical Physics	Theoretical	4
			B010803T	Advanced Quantum Mechanics	Theoretical	4
	VIII		Optional	Choose any one of the following		
			B010804T	(A) Plasma Physics	Theoretical	4
			B010805T	(B) Laser & Modern Optics	Theoretical	4
			B010806P	Electronics Lab	Practical	4
			B010901T	Nuclear and Particle Physics	Theoretical	4
		Major/Compulsory	B010902T	Solid State Physics	Theoretical	4
			Optional	Choose any one of the following		
	IX		B010903T	(A) Quantum Field Theory	Theoretical	4
			B010904T	(B) Atomic and Molecular Physics	Theoretical	4
M.Sc. Second			B010905P	General & Optics Lab	Practical	4
Year		Research Project	B010906R	Research Project	Project	4
			Optional	Choose any one of the following		
			B011001T	(A) Electronic communication systems	Theoretical	4
		Major/Compulsory	B011002T	(B) Analog and Digital Communication	Theoretical	4

4th Year UG (Hons.)/ 4th Year UG (Hons. with Research)/M.Sc. (Physics)

		Optional	Choose any one of the following		5
		_			
		B011003T	(A) Advanced Solid State Physics	Theoretical	4
X		B011004T	(B) Liquid Crystal Physics	Theoretical	4
		Optional	Choose any one of the following		
		B011005T	(A) Astrophysics	Theoretical	4
		B011006T	(B) High Energy Physics	Theoretical	4
		B011007P	Special Lab	Practical	4
	Research Project	B011008R	Research Project	Project	4

Research Project (UG with research, PG Physics):

Instructions regarding research project:

- 1. The research supervisor will encourage students (UG with research and PG) to select contemporary and research oriented topic of the concerned subject.
- 2. Academic institutions are free to choose research projects in the form of Industrial Training, Internship, and Survey Work etc.
- 3. The details (indicative) of the study done on the selected topic in the research paper (Report/Dissertation) will be as follows
 - A. Identification of Problem
 - B. Reviews of literature
 - C. Research Methodology/Materials and Methods
 - D. Findings
 - E. Conclusion
- 4. Report / Dissertation of research projects should be in legible handwritten or printed a copy, which will be the educational institution's copy, will be submitted by the student for evaluation. The student may make another copy separately for himself.

S. N.	Name	Designation	Department	College/University	Email/Phone	Signature
1	Prof.M.Imran Aziz (Convener)	Professor	Physics	Shibli National College, Azamgarh	azizimran33@gmail.com	Je. len mi
2	Prof.S.Tahir Husen (Dean)	Professor	Physics	Shibli National College, Azamgarh	sthasan0265@gmail.com	Hasan
3	Dr. Kamlesh Kumar	Assistant Professor	Physics	S.G.Govt.P.G. College,Gohna,Ma u	Kamleshku79@gmail.com	Allman
4	Dr.Avinash Chand Yadav	Assistant Professor	Physics	S.G.Govt.P.G. College,Gohna,Ma u	avinashchandy@gmail.co <u>m</u>	Guinast
5	Mr.Sartaz Ahmad	Assistant Professor	Physics	D.A.V.College, Azamgarh	mohdsirtaz95@gmail.com	Hirtor
6	Prof.Shamshad Ahmad Khan (External Expert)	Professor	Physics	St.Andrew's College Gorakhpur	shamshad_phys@yahoo.com	Althan
7	Dr.Kaushlendra Chaturvedi (External Expert)	Associate Professor	Physics	Siddharth University, Siddharth Nagar	kaushalchaturvedi@suksn.edu 	Konthur

Syllabus developed and approved by: B.O.S. (Physics)

0	nme/Class: Year: Semester: VII A Year)/M.Sc. PHYSICS U.G.(4th Year)/M.Sc. First			
		Subject: P	hysics	
Course	Code: B010701T	Course Title	Mathematical Physics	
		Course Objective	s & Outcomes	
	tools wherever needenes: After completing thi Physics, of partial d	ed. s course the students will ifferential equations specia	udents so that they can apply Mathematica be able to apply ideas of Group Theory to lly the Bessel functions to understand the pl of Klystron amplifiers, etc.	Solid State
	Credits:		Course: Core Compulsory	
Max. Marks: 25+75 Min. Passing Marks:				
	Total No.of	Lectures-Tutorials-Practic	al (in hours per week):L-T-P: 4-0-0	
Unit		Торіс	· • • •	No.of Lectures
I	Matrices Basic properties of matrices (Review only), Orthogonal matrices, Hermitian and Unitary matrices, Similarity and unitary transformations, Eigen values and Eigen vectors, Cayley Hamilton Theorem, Diagonalization of matrices.			-
п	Functions of Complex Variables and Special functions Analytic functions, Cauchy-Reimann conditions, Cauchy's integral theorem and integral formula, Taylor and Laurent series, singularity, poles, residues and evaluation of integrals. Special functions (Bessel, Hermite and Legendre functions) Green's function for 2-and 3-dimensions, Dirac delta function			

	Computational Techniques	
	Root of a function, finite difference method, inter-polation, integration by trapezoid and Simpsons	
III	rules.	10
IV	Fourier Series and Transforms	10
	Fourier series, Fourier sine and cosine series, applications, Fourier Transform and its properties,	10
	Fourier Transform of rectangular, triangular and exponential functions.	
v	Group Theory Symmetry elements and symmetry operations, Point group and their representation, , Matrix	15
	representation, Great Orthogonality theorem (statements and interpretation only), Reducible and irreducible representations, character tables of C_{2v} , characterization of electronic states and	
	vibrational model of polyatomic molecules	
	Suggested Readings	
1 Mo	trices and tensors - A.W. Joshi, 3 rd Ed, New Age International	
	thematical Methods for Physicists- G.B.Arfken, H.J.Weber, 7 th Ed, Academic Press.	
	athematical Methods for Physics - J. Mathews, R.Walker, 2 nd Ed, Pearson Addison-Wesley	
	vanced Engineering Mathematics - Erwin Kreyzig, 9 th Ed, Wiley.	
1. 110	valeed Englicering Mathematics El vin HeejEig, y Ed, Whey.	
	Course Books published in Hindi may be prescribed by the Universities.	
I	course Doons publica in Anna may be preservou by the Charterstates.	

- 1. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning(NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
- 4. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation(CIE)Methods

20 marks for Test/Quiz/Assignment / Seminar

05 marks for Class Interaction

Course Prerequisites

Passed Degree Course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programmeon Technology Enhanced Learning (NPTEL),<u>https://nptel.ac.in/course.html</u>

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Ũ	rogramme/Class: Year: J.G.(4th Year)/M.Sc. PHYSICS Vear)/M. First			Semester: VI	I
		Subject: Phys	sics		
Course C	Course Code: B010702T Course Title: Classical Mechanics				
	Cou	rse Objectives & Outcom	es		
 Course Objective: To provide a course of the highest academic quality with deep knowle understanding in an atmosphere of relatively less facilities, basic infrastruct odd geographical conditions so as to produce teachers and researchers excellence to beat with frontiers of international repute. Course Outcomes: The students will be able to solve complex problems with larger degrees of using the elegant and simpler approach of this course including Lag Hamiltonian and other formalisms. 					
	Credits:4 Course: Major (Compulsory)				
Max.Marks: 25+75 Min.Passing Mark				ks:	
	Total No. of Lectures-Tu	atorials-Practical(in hours p	per week):L-T-P: 4-	0-0	
Unit		Topics			No. of Lectures
Ι	Lagrangian and Hamiltonian Formalism Review of Galilean and Newtonian concept of motion, types of constraints, generalised coordinates, principle of virtual work, D'Alembert's principle, calculus of variations; Hamilton's principle; principle of stationary/least action, shortest distance,				14
 Canonical transformations II Poisson bracket formalism, infinitesimal canonical transformations, examples of canonical transformation, conservation theorems in Poisson bracket formalism; invariance of Poisson bracket under canonical transformations, Poisson bracket relations, angular momentum Poisson bracket relations, 			14		

	Symmetry and Conservation Laws	1
III	Concept of Symmetry, Noether's theorem, spatial translations, temporal translation, and spatial rotations and the related conservation laws.	10
	Rigid Body Motion	14
IV	Independent coordinates; orthogonal transformations and rotations (finite and infinitesimal), Euler's angles and Euler's theorem on the motion of a rigid body, angular momentum and the kinetic energy about a point, moment of inertia tensor, symmetrical top, precession of Earth's axis of rotation and a charged particle in magnetic field.	
	Small Oscillations	8
V	General formalism of small oscillations, Eigen value equation and the principal axis transformation, frequencies of free vibration and normal coordinates idea of coupled oscillators.	

Suggested Readings

- 1. H. Goldstein, C. Poole, J. Safko, Classical Mechanics, (Pearson, 2001).
- 2. L. Landau, E.M. Lifshitz, Mechanics (Pergamon, 1976).
- 3. N.C. Rana, P. S. Joag, Classical Mechanics (Tata McGraw-Hill, 2017).
- 4. T.W.B. Kibble, F.H. Berkshire, Classical Mechanics (Prentice Hall, 1996)

Course Books published in Hindi may be prescribed by the Universities.

Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

1. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

4. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

Suggestive Digital Platforms/WebLinks

National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

2.

3.

Course Pre-requisites

Passed Degree Course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology,<u>https://ocw.mit.edu/courses/physics/</u>
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/Class: U.G.(4th Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.Sc. First	Semester: VII				
	Subject: Physics					
Course Code: B010703T	CourseTitle: Quantum Mechanics					
Course Objective & Outcomes						

Course Objective:

- 1. To acquire knowledge of mathematical tools which is applied to understand the Quantum Mechanics
- 2. To acquire the knowledge of postulates of Quantum Mechanics, angular momentum, addition of angular momentum, and identical particles

Course Outcomes:

- 1. To understand the significance of mathematical tools in Quantum Mechanics
- 2. The student recognizes that learning these topics are stepping stone to understand advanced quantum mechanics.

The topics covered in the syllabus show an understanding of postulates of Quantum Mechanics, angular momentum, addition of angular momentum, and identical particles

Credits:4	Course: Core (Compulsory)		
Max.Marks: 25+75	Min.Passing Marks:		
Total No.of Lectures-Tutorials-Practical(in hours per week):L-T-P: 4-0-0			

Unit	Topics	No.of Lectures
I	Mathematical Tools of Quantum Mechanics: Linear Vector Spaces. Elements of Hilbert Space. Dirac Notation. Operators: Hermitian and Projection Operators, Inverse and Unitary Operators, Eigenvalues and Eigenvectors of Operators. Commutator Algebra. Unitary Transformations and Change of Basis. Matrix Representation of Operators. Continuous Basis, Position and Momentum Representation and their Position Connection. Parity Operator.	15
II	Postulates of Quantum Mechanism: Basic Postulates of Quantum Mechanics. Measurement in Quantum Mechanics. Time Evolution of System's State. Connecting Quantum to Classical Mechanics: Poisson Brackets and Commutators, The Ehrenfest Theorem.	
ш	Angular Momentum: Orbital Angular Momentum Operators and their Commutation Relations. Eigenvalues and Eigen functions of L^2 and L_z . Spin Angular Momentum: Stern-Gerlach Experiment. Spin Angular Momentum Operators, Pauli's Spin Matrices and Their Commutation Relations. General Formalism of Angular Momentum. Matrix Representation of Angular Momentum.	7

IV	Rotations and Addition of Angular Momenta: Rotation in quantum Mechanics: Infinitesimal Rotations, Finite Rotations, Euler Rotations. Addition of Angular Momenta, Clebsch-Gordan Coefficients and their Properties.	15
V	Identical Particles: Identical Particles in Quantum Mechanics. Exchange Degeneracy, Symmetric and anti-symmetric Wave functions. Construction of Symmetric and anti-symmetric Wave functions from Unsymmetrized Wave functions. Distinguishability of Identical Particles. The Pauli Exclusion Principle.	8
	Suggested Readings	
 2. M 3. Q 4. Ir 	uantum Mechanics: Concepts and Applications: N. Zettili, 2 nd Ed,Wiley. Iodern Quantum Mechanics: J. J. Sakurai, 3 nd Ed, Cambridge University Press. uantum Mechanics: L. Schiff, 3 nd Ed, McGraw Hill. Itroduction to Quantum Mechanics: David J. Griffiths, 3 nd Ed, Clarendon Press. inciples of Quantum Mechanics: P. A. M. Dirac, 4 th Ed, Clarendon Press.	
	Course Books published in Hindi may be prescribed by the Universities.	

1

L

MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>
 National Programme on Technology Enhanced Learning (NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>
 Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
 Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed Degree course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

	amme/Class: (4th Year)/M.Sc. SICS	Year: U.G.(4th Year)/M.S First		Semester: VII		
Subject: Physics						
Cours	se Code: B010704T	Course Title: An	alog and Digital]	Electronics		
		Course Objective	& Outcomes			
under Cour After (i) U (ii) U (iii) U (iv) H (v) K Gi	nderstand the course of rstanding the working of da rse Outcomes: completing the course, the Inderstand how Op-amp an Inderstand the limitations of Inderstand how data is com How counting machines uti now the data storage capa igabyte, Terabyte etc.	aily-life electronic systems e candidate will be able to: nd Timers can serve as a so of Op-amp. everted from analog to digi lize binary counters. city of a semiconductor m	urce of an infinite tal form for instan emory. To unders	train of pulses (Clock). ce in a digital multimeter. tand the terms Kilobyte, N		
	Credits 4	5:	Cou	rse: Core (Compulsory)		
	- Max.Marks	: 25+75]	Min.Passing Marks:		
	Total No.of Lectures	s-Tutorials-Practical(in hou	rs per week):L-T-	P: 4-0-0		
Unit Topics				No.of Lectures		
 Analog Electronics: Differential Amplifier, d.c. and a.c. analysis, Integrated circuit operation amplifier, Ideal op-Amp, Basic characteristics, Negative feedback, Inverting and non-inverting amplifier, Closed loop gain, Concept of virtual short, Voltage follower, Difference amplifier, Summation amplifier, Integrator and differentiator, Open loop comparator, Schmitt Trigger, Astable and mono stable multi vibrator, Triangular wave generator. 555 Timer. Non ideal properties of op-Amp: Output saturation lovals, offset voltages and currents, Input bias current, slow rate limitation 				15		

Output saturation levels, offset voltages and currents, Input bias current, slew rate limitation, Finite CMRR, Finite frequency response, Gain-band width product.

Interfacing the analog and digital worlds.

D/A Converter, Binary weighted resistor D/A converter, R-2R Ladder D/A converter, Sample and hold circuit, basic idea of quantization and sampling, converter specifications, A/D Π 10 converter, Ramp, Flash and Successive Approximation A/D converter, Voltage to frequency and frequency to voltage converter. **Digital Electronics: Sequential Circuits** Review of Flip-Flop Characteristic table and characteristic equation, Ripple counter, Mod 10

III number, Frequency division, Counter with Mod No $< 2^{N}$. Change of Mod number. Synchronous counter design, Ring counter, Johnson counter, Counter applications, Digital Clock.

Integrated circuit Logic Family Classification of IC's on the basis of packing density and family, Logic family characteristics. 10 IV Transistor as a switch, RTL, DTL and TTL, Open collector. Totem-pole output TTL, Current sourcing and sinking action of TTL output, ECL. 10 Memory Devices and Microprocessors Memory terminology, General memory operation, ROM architecture, Read operation, ROM types. 15 V Flash memory, ROM applications, Static RAM and Dynamic RAM, Expanding word size and capacity. 11 Introduction to 8085, microprocessor architecture, assembly language programming 16			
IV Transistor as a switch, RTL, DTL and TTL, Open collector, Totem-pole output TTL, Current sourcing and sinking action of TTL output, ECL. 10 V Memory Devices and Microprocessors 15 Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity. 15		Integrated circuit Logic Family	
IV Transistor as a switch, RTL, DTL and TTL, Open collector, Totem-pole output TTL, Current sourcing and sinking action of TTL output, ECL. 10 V Memory Devices and Microprocessors 15 Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity. 15		Classification of IC's on the basis of packing density and family. Logic family characteristics,	
Image: Second State Processing and sinking action of TTL output, ECL. Memory Devices and Microprocessors Memory terminology, General memory operation, ROM architecture, Read operation, ROM types, Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity.	IV		10
Wemory Devices and Microprocessors15Memory terminology, General memory operation, ROM architecture, Read operation, ROM types, Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity.15			
 Memory terminology, General memory operation, ROM architecture, Read operation, ROM types, Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity. 			
 V Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity. 			15
• architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity.			15
• architecture, Read and write operations, Static RAM and Dynamic RAM, Expanding word size and capacity.	T 7	Flash memory, ROM applications, Programmable Logic Devices, Semiconductor RAM, RAM	
capacity.	V		
		introduction to 6065, interoprocessor areintecture, assembly language programming	

Suggested Readings

- 1. Electronic Principles A. Malvino, D.J. Bates 7th Ed TMH, N. Delhi.
- 2. Microelectronic Circuit and Devices Mark N. Horenstein, Pearson 2nd Ed.
- 3. Fundamentals of Analog Circuits Floyd, Buchla 2nd Ed, Pearson 2017.
- 4. Digital System R.J. Tocci, PHI 6th Ed, 2000.
- 5. Digital Logic and Computer Design M. Morris Mano, PHI, Delhi 1996.
- 6. Integrated Electronics: Analog and Digital circuits and Systems, J. Millman, C. C. Halkias, TMH, Edition 1991.
- 7. Operational Amplifiers with Linear Integrated Circuits- William D. Stanley, 4th Ed, Pearson.
- 8. Operational Amplifiers and Linear Integrated Circuits Robert F. Coughlin, Frederick F. Driscoll, 6th Ed, PHI.

Course Books published in Hindi may be prescribed by the Universities.

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx

4.Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed Degree course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>

3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

	nme/Class: Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.S First	L	Semester: `	VII
		Subject: Physics	I		
Course C	Code: B010705T	Course Title: Experin	nental Techniques	5	
	Сог	urse Objectives and Outco	omes		
 Course Objectives: This course focuses on pumps, gauges, and techniques employed for morphological study of materials. Course outcomes: After studying this course the students will be able to distinguish between the techniques employed for investigating various properties/characteristics of materials. 					
Credits:4 Course: Major (Compulsory))	
Max.Marks: 25+75 Min.Passing			in.Passing	g Marks:	
	Total No.of Lectures-Tutoria	lls-Practical(in hours per w	eek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	VacuumTechniques Units and basic definitions, F gauge, Thermocouple gauge Hot filament ionization gauge	e, penning guage (Cold ca			15
п	Thin film techniques Introduction, Fabrication of t	thin films, Technological A	pplications of thin fi	ilms.	10
Morphological study Scanning tunneling microscopy (STM), Atomic Force Microscopy (AFM), Scanning Electron microscope(SEM), Scanning Tunneling Spectroscopy(STS).			10		

IV V	 X- Ray Diffraction Technique Introduction, Lattice planes and Bragg's Law, Diffractometer - Instrumentation, Single crystal and Powder diffraction, Scherrer equation, Structure factor, Applications of XRD. Tools for Maths and visualisation in Python (The Numpy and PylabModules) 	10
	Numpy module:- Arrays and Matrices-creation of arrays and matrices (arange, linspace,zeros,ones,random,reshape,copying),ArithmeticOperations,crossproduct,dot product,Data visualization- The Matplotlib, Module- Plotting graphs, Multiple plots, Polar plots, Pie Charts, Plotting mathematical functions, Sine and other functions.	15
	Suggested Readings	
 Thin Elem Introd Adva Core 	ntific foundations of vacuum techniques - S. Dushman, J.M. Laffer, 2 nd Ed,Wiley–Blac film technology - R. Berry, P.M. Hall, M.T. Harris, Van Nostrand-1968. ents of X-ray diffraction - B.D. Cullity,Addison-Wesley Publishing Company, Inc19: luctiontoNanoscience&Technology-Chathopadhyay,Banerjee,Prentice Hall India-2009 niced Experimental Techniques in Modern Physics – M. Varier,Pragati Prakashan-2021 Python Programming – W. J. Chun, 1 ^a Ed, Prentice Hall. erical Methods in Engineering with Python –J. Kiusalaas, 3 rd Ed, Cambridge ty Press.	56.
L	Course books published in filhal may be prescribed by the Universities.	

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed Degree course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

U.G.	ramme/Class: (4th Year)/M.Sc. 'SICS	Year: U.G.(4th Year)/M.S First		Semester: VII		
	Subject: Physics					
Cour	Course Code: B010706P Course Title: General Physics Lab					
		Course Objective & O	Dutcomes			
	rse Objective: The experim rious Laws and observation			nysics Course. The	validity	
	se Outcomes: The results of			the established pat	tern)	
enabl	the students to recognise an improved approach.			-		
Credits:04 Course: Core (Compulse					lsory)	
	Max.Marks: One Practical: Record: Viva-Voce: Attendance:	100 50 Marks 20 Marks 25 Marks 05 Marks.	ľ	Min. Passing Mark	s:	
		prials-Practical(in hours p	⊥ er week):L-T-P: 0-	-0-4		
		Торіс	S		No. of Hours	
1. 2.	carriers in a semiconducto Determination of Lande's	n of carrier concentration, H or sample. a g – factor of a free electron		-		
3.	DPPH). Magnetic susceptibility by	v Ouincke's tube mehod.				
4.		n energy gap in a semicond	uctor.			
5.	Refractive index of glass					
6.						
7.	-			60		
8.	Y. by Newton's ring meth	e				
9.	R - C coupled amplifier.					

10. Boltzman Constant.

11. Thickness of wire using Laser.

Note:

- > The student has to do a minimum of six experiments from the given list.
- In the practical examination the student will be asked to perform one experiment of two hours duration.

Suggested Readings

1. Manuals of Concerned Experiments and Texts for Theoretical Support.

Course Books published in Hindi may be prescribed by the Universities.

MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>
 National Programme on Technology Enhanced Learning (NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>
 Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>
 Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed Degree Course in Physics

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

U.G.(amme/Class: (4th Year)/M.Sc. SICS	Year: U.G.(4t Year)/M.Sc. Fit		Semester	: VIII
	5105	Subject: Phys	ics		
Cours	se Code: B010801T	Course Title: Classical Electro	odynamics		
		Course Objectives and	l Outcomes		
	Electro Relativ researc	ovide a systematic and core known dynamics based on firm theoristic generalization of the subj hers of highest calibre for the fu	retical foundation lect matter. To pro- ture. a knowledge and u	with particular em oduce academic tea understanding of the	phasis c chers ar
		ovariant formulation of the unde		the course. se: Major (Compu	lsory)
Max.Marks: 25+75 Min.Passing Marks:					
	Total No.of Lectures-	Tutorials-Practical(in hours per			
Unit		Topics			No.of Lecture
	Review of basic cor	cepts of STR and Tensors			Lectury
	transformation as 4-v tensors, 4-scalors, 4-	vent, world line, light cone, c vector transformation, metric t vectors, 4-tensors, 4-displacen ve, 4- potential, proper time, cova	ensor, symmetric a nent, 4-velocity an	and anti-symmetric nd acceleration; 4-	
	Dynamics of Charg	ed Particles in Electromagn	etic Fields		
Π		atic E-field, uniform static B- f rvature) in non-uniform static B-		d B- fields, particle	06
Field, Potential and Radiation from Moving Charges					
	Retarded Potential and Lienard-Wiechert potentials, fields due to a charge moving with uniform velocity; fields due to an accelerated charge; near and far zone fields, dipole radiation, Larmor's formula and its relativistic generalisation (Lienard's formula), power radiated by a point charge, angular distribution of radiated power for linearly and circularly accelerated charges, reaction force of radiation, electromagnetic mass of the electron, radiative damping.				

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programm U.G.(4th	e/Class: Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.S First		VIII
		Subject: Phy	sics	
Course Co	de: B010802T	CourseTitle: Statist	ical Physics	
	Co	ourse Objectives and Out	comes	
Mechanics constituen Course 1. derive th 2. understa 3. understa Einstein	ts from first principle. Outcome: After completing the familiar gas law by using and the distinction between c	properties of matter with g this course, the students w Maxwell Boltzman statistic classical and the quantum sy solids approaches the valu	out considering properties of vill be able to:	
	Credits:4		Course: Core (Compulsory)	
	Max.Marks: 25+75	5	Min.Passing	; Marks:
r	Fotal No. of Lectures-Tutori	als-Practical (in hours per v	veek):L-T-P: 4-0-0	
Unit		Topics		No. of Lectures
Ι	particles in 3D box, Eins system, Micro canonical formalism (Sackur-Tetrode paradox. Schottky defects canonical formalism, can partition function, connects definition of entropy. Two formalism, partition function	tein solid and Ising spins ensemble, monatomic ic e equation, equation of star s, ideal paramagnet and nonical ensemble, Boltzm ion with thermodynamics, e o level system, ideal gas an on for diatomic gases, Gran	nd 3D box, N-non-interacting), equilibrium of an isolated leal gas in Micro-canonical te, chemical potential), Gibbs Einstein solid under Micro- ann probability distribution, energy fluctuation, Boltzmann and Einstein solid in canonical and canonical ensemble, Gibbs and potential, connection with	22
п	The Heat Capacity of S Dulong-Petit Law, Einste Comparison with experime	ein's & Debye's theory	of specific heats of solids	s, 6

ſ		The Perfect Classical Gas:	
		The Definition of perfect Classical gas, Translational, rotational and vibrational	8
	III	partition functions, Expressions for Helmholtz free energy and chemical potential, Validity condition for classical regime, Equation of State of perfect classical gas.	

3

IV	The Perfect Quantum Gas: Fermi gas, thermodynamic properties (entropy, pressure and chemical potential), properties at zero K (Fermi energy, and Fermi pressure), Application to electron gas in metals, electronic heat capacity, white dwarf stars, liquid helium (He ³) problem, Pauli paramagnetism and semiconductors. Relativistic electron gas. Ideal Bose gas, Bose-Einstein condensation, critical temperature, internal energy, pressure and heat capacity, λ -point in ⁴ He. photongas, Partition function for photons, photon density of states, Planck's law, Wien's displacement law, Stefan's Boltzmann Law, thermodynamic properties of photon gas.	16
V	Phase-transition and Fluctuations First and second-order phase-transitions, The Bragg-William's approximations, Ising in one dimension, Fluctuations in Ensembles, concentration fluctuations inquantum gases, Langevin Theory of Brownian motion.	8
	Suggested Readings	
. Statistic . Introduc . Statistic . Fundam . Introduc . Thermo	al Physics - F. Mandl, 2 nd Ed,ELBS JohnWiley-1988. al Physics Part-I, - Landau and Lifshitz, Pergamon Press, Oxford. ction to Statistical Physics - Silvio R. A.Salinas, Springer. al Mechanics - B.K. Agarwal, Melvin Eisner, 3 rd Ed, New Age. eentals of Statistical Mechanics - B.B. Laud, New Age. ction to Statistical Mechanics - R. Bowley,M. Sanchez, 2 nd Ed, OxfordScience Publications. dynamics and Statistical Mechanics- Greiner, Neise, Stocker, 1995, Springer. al and Thermal Physics with Computer Applications- Harvey Gould, Jan Tobochnik, Princeton Univ 2010.	versity

Course Books published in Hindi may be prescribed by the Universities.

- 1. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation(CIE)Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Ũ	nme/Class: h Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.S First		
		Subject: Physics		
Course	Code: B010803T	Course Title: Advance	ed Quantum Mechanics	
		Course Objectives and O	Putcomes	
1. 2. Cours 1. 3. 2.	To have the knowledge of E Relativistic Quantum Mecha se Outcomes: Understand the significance The topics covered in the s Semi-Classical Theory of R	Iementary Theory of Scatte anics of Approximation Method yllabus show an understar adiation, & Relativistic Qua urse, students have knowle	ationary and Non-Stationary States ring, Semi-Classical Theory of Rac for Stationary and Non-Stationary ading of Elementary Theory of Sca antum Mechanics edge and ability to apply Quantum	liation, & States. ttering,
	Credits:4 Course: Optional			
Max.Marks: 25+75 Min.Passing Marks			ks:	
Total No.of Lectures-Tutorials-Practical(in hours per week):L-T-P:4-0-0				
Unit		Topics		No.of Lectures
I	 Approximation Methods for Stationary States Time-Independent Perturbation Theory, Perturbation Theory of Non-Degenerate States: First and Second Order Correction. Perturbation Theory of Charged Oscillator in an Electric Field, The Stark Effect, Degenerate Perturbation Theory, Fine Structure and Zeeman Effect, Variational Method, WKB Approximation Method. 		15	
Time-Dependent Perturbation TheoryThe Picture of Quantum Mechanics: Schrodinger, Heisenberg, and interaction Pictures,IIHeisenberg Equation of Motion. Time –Dependent Perturbation Theory: TransitionProbability. Fermi Golden Rule. Adiabatic and Sudden Approximations.			-	
III	Elementary Theory of Scattering The Differential and Total Cross-section. The Born Approximation. Partial Wave Analysis. Phase Shift.		e 10	

IV		Semi-Classical Theory of Radiation Absorption and Induced Emission: Transition Probability, Interpretation in Terms of absorption and Emission, Electric Dipole Transition, Forbidden Transition. Spontaneous Emission: Classical Radiation Field, Asymptotic Form. Radiated Energy. Dipole Radiation. Line Breadth	10
	V	Relativistic Quantum Mechanics The Klein-Gordon Equation: Plane Wave Solutions, Charge and Current Densities, Interaction with Electromagnetic Fields, Non-relativistic Limit. The Dirac Equation: Dirac's Relativistic Hamiltonian. Position Probability Density. Plane Wave Solution of Dirac Equation. The Probability Density. Plane Wave Solution of Dirac Equation. The Spin of Dirac Particle. Significance of Negative Energy States. The Spin Orbit Energy.	15
		Suggested Readings	
1. 2. 3. 4. 5. 6.	Quan Quan Mode Relat	tum Mechanics: Concepts and Applications: N. Zettili, 2 nd Ed, Wiley. tum Mechanics: L. I. Schiff, 4 th Ed, McGraw Hill. tum Mechanics: P. M. Mathews and K. Venkatesan, 2 nd Ed,McGraw Hill. ern Quantum Mechanics: J. J. Sakurai, 3 rd Ed, Cambridge University Press. ivistic Quantum Mechanics: J.D. Bjorken and S.D. Drell. McGraw-Hil-1964. iples of Quantum Mechanics: P. A. M. Dirac, 4 th Ed,Clarendon Press.	
		<i>Course Books published in Hindi may be prescribed by the Universities.</i>	

- 5. MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>
- 6. National Programme on Technology Enhanced Learning (NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>
- 7. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 1. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology,<u>https://ocw.mit.edu/courses/physics/</u>
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/Class: U.G.(4 th Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.Sc. First	Semester: VIII		
	Subject: Physics			
Course Code: B010804T Course Title: Laser and Modern optics				
Course Objectives and Outcomes				

Course Objective: The primary goal to design this course is to provide the students valuable information about the various naturally occurring phenomena that were not clearly understood. To explain these concepts and theories through a wider range of current applications and examples.

Course Outcome: After completing this course the students shall:

1. Understand the particle aspect of radiation, Lasers and Masers.

2. Get the knowledge of how atoms interact and how their energies change under non linear properties of materials.

3. Get the knowledge of quantum nature of optics and holography.

4. Gain the information and knowledge of how LASERS have enabled us to restudy and investigate Raman Scattering with greater precision.

Credits:4 Course:		Course: Optiona	1	
Max.Marks: 25+75 Min.Pas		Min.Passing	ng Marks:	
	Total No.of Lectures-Tutorials-Practical(in hours per week):L-T-P:4-0-0			
Unit	it Topics		No.of Lectures	
Ι	Basic Laser Theory and Optical Resonators Einstein coefficients, Evaluation of transition rates, Line broadening mechanisms, Laser rate equations for three level system, Cavity Modes, Q of cavity, Q Switching, Mode locking, Analysis of optical resonators using geometrical optics		10	
II	Types Of Lasers and Applications Ruby laser, Helium-Neon laser, Nd-YAG Laser, N2 lasers, Semiconductor lasers, Laser induced fusion Masers and Applications Theory of Masers, Ammonia Maser, Solid State Maser		15	

III	Quantum Optics		
111	Basic idea of quantum coherence correlation function, coherent states and its properties	10	
TX7	Non Lincor Ontios	10	
IV	Non-Linear Optics Non-linear Polarizability tensors, Coupled amplitude equation, Manely-Rowe's relationships; Parametric amplification and parametric oscillation, Phase matching, Phase conjugation, Second harmonic generation. Simulated Raman effect, Hyper Raman effect, Coherent anti stokes Raman scattering.	10	
V	Holography Basic principle of holography ,methods of hologram recording, reconstruction of object waveform by hologram Typical arrangement for hologram reconstruction, practical consideration of holography and its application.	15	
	Suggested Readings		
2. Qu 3. No	asers and Non-Linear Optics by B.B. Laud (Wiley Est. Ltd., New Delhi). aantum Optics by S.H. Kay and A. Maitland (Academic Press, London). on-Linear Optics by P.G. Harper and B.S. Wherret (Academic Press, London). aser and holographic Data processing by N.G. Bosov (Mir Publisher, Moscow). Ser and holographic Data processing by N.G. Bosov (Mir Publisher, Moscow).		
Course Books published in Hindi may be prescribed by the Universities.			

1.MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>

2. National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-andastronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- MIT Open Course Ware-Massachusetts Institute of Technology,<u>https://ocw.mit.edu/courses/physics/</u>
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

	ramme/Class: 4 th Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.S First Subject: Phy	ic.	Semester: VII	I
Cours	se Code: B010805T	Course Title: Pla			
		Course Objectives and	•		
Com	as Objectives. This can	,		f maattan aalla	d the
plasn	rse Objectives: This cou na.	irse takes into account ti	he lourth state of	matter calle	d the
	rse Outcome: The stude ing nuclear fusion reaction		-	a particularly	in
	Credits:	4	Cou	rse: Optional	
	Max.Marks:	25+75	l	Min.Passing M	arks:
	Total No.of Lectures-Tute	prials-Practical(in hours per	week):L-T-P: 4-0 -	-0	
Unit		Topics			No.of Lectures
Ι	Plasma State & its Prop Elementary ideas of plasm Applications of Plasma (in non-uniform fields, drift r invariants, Plasma confin Belts).	ha state of matter Existence brief), Motion of charge, P notion, electrostatic and m	articles in uniform	E&B fields, es, Adiabatic	20
	Hydrodynamical Descr Hydroynamical descriptior plasma oscillations, Short v	n, Equation of magneto-hy			10
ш	Kinetic Theory of Plasn The meaning of f(v), Equati damping, Collision dampin	ions of kinetic theory ,Boltz	zmann-Vlasov equa	ation, Landau	10

IV V	Wave Phenomenon in Magneto-PlasmaElectromagnetic waves perpendicular to B0,Phase velocity, Polarization, Cut- off and resonances, Electromagnetic waves parallel to B0, Magnetosonic and Alfven waveIntroduction to Controlled FusionThe problem of controlled fusion, Magnetic confinements such as Toruses, Mirrors, Pinches, Laser Fusion, Plasma heating, Fusion Technology	10 10
	Suggested Readings	
	oduction to Plasma Physics - F. F. Chen, Plenum Press, New York. sma Physics - A. Bittencourt, 3 rd Ed, Springer.	
	Course Books published in Hindi may be prescribed by the Universities.	

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> 4.Swayam Prabha-DTH Channel,https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

U	amme/Class: (4th Year)/M.Sc. PHYSICS	Year: U.G.(4th Year)/M.S First		Semester: VIII	
		Subject: Physics		I	
Cours	se Code: B010806P	Course Title: Elec	ctronics Lab		
		Course Objective & Outco	omes		
	rse Objective: The experiments are us Laws and observations are teste	-		Course. The validity	y of
Cour	se Outcomes: The results of an ex	periment (in agreement/dev	viated from the esta	blished pattern) en	able
	udents to recognise the faults/error oved approach.	s in his approach and encou	rages to repeat the	experiment with a	n
	Credits:04		Cour	rse: Core (Compu	lsory)
	Max.Marks: 100 One Practical: 50 Ma Record: 20 Ma Viva-Voce: 25 Ma Attendance: 05 Ma	rks rks	Ν	/lin. Passing Marks	5:
	Total No. of Lectures-Tutorials		reek):L-T-P: 0-0-4		
		Topics			No.of Hours
1 Stu	udy of half – wave and full wave re	otifiers and measurement o	f ripple factor		
1. Su	Study of Timer 555 in Astable a		i ipple factor.		
2. 3.	Operational amplifiers: Measur inverting modes.		nt and gain in in	verting and non –	-
4.	Operational amplifiers as summ	ing amplifier, Integrator an	d differentator.		
5.	Study of (a) Zener Regulated (measurement of percentage regu	C C	l and (c) regulated	power supply and	
6.	Triggering characteristics of SC	'R.			(0)
7.	Study of wave shaping circuits	- clippers and clampers.			60
8.	Study of multi vibrators.				
9.	Emitter Follower.				
10.	Study of voltage and current reg	gulation by VR tube (OA2)			

Note:

- > The student has to do a minimum of six experiments from the given list.
- In the practical examination the student will be asked to perform one experiment of two hours duration.

Suggested Readings

- 1. Electronic Principles A. Malvino, D.J. Bates 7th Ed TMH, N. Delhi.
- 2. A First Lab in Circuits and Electronics Yannis Tsvidis, John Wiley and Sons.
- 3. Fundamentals of Analog Circuits Floyd, Buchla 2nd Ed, Pearson 2017.
- 4. Practical Electronics for Inventors Paul Scherz, McGraw Hill.
- 5. Practical Electronics Handbook Ian Sinclair, John Dunton, 6Th Ed, Newnes.
- Experiments in Electronics Fundamentals & Electric Circuit Fundamentals. David Buchla, 4th Ed, Prentice Hall USA.

Course Books published in Hindi may be prescribed by the Universities.

- 8. MIT Open Learning-Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>
- 9. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 10. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 1. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed UG (Hons.)/ UG (Hons.with Research)7th semester/ M Sc. (Physics) 7th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology,<u>https://ocw.mit.edu/courses/physics/</u>
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Ũ	me/Class: HYSICS	Year: Seco	nd	Semester: IX	<u> </u>
		Subject: Physics			
Course (Code: B010901T	Course Title: Nuclear and	Particle Physics		
	С	ourse Objectives and Out	comes		
Thi con Course Aft 1. deca 2. acce	Objective: s course discusses the fundation oprehension of the cosmos a Outcomes: er the completion of this course Develop an understanding of on the second second second second and nuclear reactions. Learn about the basic build elerators and detectors. Gain ideas about properties of	and their recent trends inclue, students will be able to: essential nuclear characterising blocks of matter and t	luding neutrinos. tics and associated	nuclear mod	
	Credits:4			rse: Major npulsory)	
	Max.Marks: 25 +7	75	Ν	Ain. Passing	Marks:
	Total No.of Lectures-Tutori	als-Practical(in hours per w	eek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	Properties of Nuclei and Review of some important using muonic X-rays and numbers, Prediction of energy coupling, Prediction of groun Q-values, threshold energy dispersion single level formu	properties of nuclei, Nuclei α -scattering, Nuclear sheergy levels in harmonic ond state spin and parity of nuclear of	ell model, Concep scillator potential, ucleus.	t of magic Spin-orbit	15
II	Radioactive Decays Review of α , β , & γ decay theory of Beta-decay, Parit plots & Comparative half-li	y Non-Conservation in β de	ecay, Wu's Experir		10
III	Two Body Problem Investigation of nature of nu of a Deuteron, S and D state,		•		10

		4
	Introduction to Elementary Particle Physics Types of fundamental forces, Classification of elementary particles and their quantum	
IV	numbers (Hyper charge, Isospin, Color), Quark flavors.Quark model of hadrons, Baryon decuplet and octet, Charge(C), Parity (P) & Time Reversal (T) invariance, CPT Theorem, Parity non- conservation in weak interactions, QCD, QGP.	15
V	Cosmic Rays, Particle Accelerators and Detectors Properties of primary cosmic ray (Energy &Charge Spectrum) & idea of origin of secondary cosmic rays, Cascade &extensive showers,Need for accelerator of charged particles, Classification of accelerators, Proton Synchrotron, Betatron, Introduction of modern Colliders (LHC and RHIC).	10
	Suggested Readings	
2- Roy 3- Eng 4- Eva 5- Gho 6- Seg 7- Per 8- Wo 9- Nu 10- Har 11- Kar (Sp 12- Bha Pu 13- Rya	 liday, D.:Introductory Nuclear Physics (JohnWiley) A.R. & Nigam, B.P.: Nuclear Physics (JohnWiley). B.R. A.:Introduction to Nuclear Physics (Addison Wesley) Introduction to Nuclear Physics (S. Chand Company Ltd.) re, E.: Nuclei & Particles (2nd Ed). (Benjamin/Cummings). kins. D.H.:Introduction to High Energy Physics(Addison Wesley). ng, S. S. M.:Introductory Nuclear Physics Second Edition (Wiley VCH) clear& Particle Physics: W. Burcham & M. Jobes. ynes, R.C.: Introduction to Space Science (JohnWiley). ttunen, H.Kroger, P. Oja, H. Poutenon. Mand Donner K.J.: Fundamental of Astronomy ringer-Verlag). ttia V.B.:Text Book of Astronomy & Astrophysics with Elements of Cosmology. (Narosa blishing House). un S.G. & Norton, A.J.:Stellar Evolution of Nuclear synthesis (Cambridge). isi, B.: Cosmic rays (George Allenand Unwin). 	
	<i>Course Books published in Hindi may be prescribed by the Universities.</i>	

- 11. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 12. National Programme on Technology Enhanced Learning (NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>
- 13. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 1. Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) First Year/ 8Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,https://www.edx.org/course/subject/physics
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Ũ	nme/Class: HYSICS	Year:Seco	nd	Semester:I	X
		Subject: Physics		L	
Course	Code: B010902T	CourseTitle: Solid	State Physics		
	Cou	urse Objectives and Outco	omes		
are dete Course	e Objective: To provide the ermined by their structure. e Outcome: The students w and job opportunities.		-	•	
	Credits:4		Course: Major (Co	ompulsory)
	Max.Marks: 25+75	5	Ν	/lin.Passing	g Marks:
	Total No.of Lectures-Tutoria	ls-Practical(in hours per we	eek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	Crystal Structure: Space lattice and basis, Lattice ZnS, graphite and diamond, I of crystal structure analysis an	Reciprocal Lattice and Bril			15
II	Lattice Dynamics And Thermal Properties Lattice vibrations of mono and diatomic chains, Infrared absorption of ionic crystals, quantization of lattice vibration and phonon, Einstein and Debye theories of specific heat, Anharmonicity and Thermal expansion				
ш	Free Energy And Energy Density of states, Fermi and n and origin of energy bands, B dynamics in crystalline lattice	nean energy at zero and fin loch theorem, Kroning Pen	ny model, concept		
IV	Magnetic Properties Diamagnetism, Paramagnetism and their explanation by mol magnetic field, spin wave the lattice models of antiferro and	lecular field theory, Heise eory and magnons, Basic	nberg explanation	of internal	_

V	Optical Properties Optical reflectance, Kramers-Kronig relations; Conductivity and dielectric function of collision electron gas	10
	Suggested Readings	
 Solid Elemination Solid Solid 	State Physics – C. Kittel, 8 th Ed,Wiley. State Physics - J.D. Patterson, B.C. Bailey, Springer-2006. entary Solid State Physic - Ali Omar, 1 st Ed, Pearson India. State Physics – A. J. Dekkar, Laxmi Publications-2008. State Physics – F. W. Ashckroft, N. D. Mermin, 1 st Ed, Cengage. State Physics-An Introduction – Phillip Hofmann, 2 nd Ed, Wiley-VCH.	
	Course Books published in Hindi may be prescribed by the universities.	

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3. Uttar Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4.Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) First Year/ 8Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/	Year:Second	Semester:IX	5
Class: M.Sc. PHYSICS			
	Subject: Physics		
Course Code B010903T	e: Course Title: Quantum Field Theory		
	Course Objectives and Outcomes		
	 jective: To develop a basic understanding of Quantum Field Theory we nature of the fields- that is every field has its corresponding quantum and strange idea of quantum particle completely distinct described in Classical field theory. A particular emphasis Electrodynamics that describes the fundamental processes betwoe Feynman diagrams. tcomes: The students will be able to develop a better, simpler and broaded interactive processes taking place between fields and particles imforce particles and matter particles. 	ntum of energ t from its cour is done on een light and n er understandi	y/particle aterpart as Quantum natter via ng of the
	Credits:4	Course:	Optiona
	Max.Marks: 25+75	Min.Passing	Marks:
	Total No.of Lectures-Tutorials-Practical(in hours per week):L-T-P:4-0-0)	
Unit	Topics		No.of Lectures
Ι	Basic conception of Fields and Particles General concept and formalism of a field, classical field, Lagrangian and Lagrangian density for a field, Hamiltonian for a particle and density for a field, Number/Fock space representation and number ope and annihilation operators,	l Hamiltonian	
п	Quantisation of Bosonic, Radiation and Dirac Fields Path integral formulation of quantisation, harmonic oscillator probl diagrams, Canonical quantisation of Klein Gordon and charged radiation/electromagnetic fields, Dirac fields,		
III	Discrete Symmetries C, P and T symmetries of free scalar and charged scalar fields, radiat fields, intrinsic parity, CPT transformation, invariance principles, Lore of free field theory.		

IV	Basics of Gauge Theories Gauge invariance of charged scalar and Dirac fields, conservation of charge, and	
1	interaction of charged fields with Maxwell field	08
v	Interacting Fields Interaction picture, time evolution operator, S-matrix and Schwinger Dyson expansion, time ordered product and Wicks theorem, Feynman diagrams for fundamental processes	14
	Suggested Readings	
 V. Eng M.I Coi J.D J.D F. N C. I A. 2 	 andau, E.M. Lifshitz, Classical Theory of Fields (Butterworth Heinmann, 1975). B. Berestetskii, E. M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon F land, 1982). S. Perkins, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison Wesley P npany, 1996). Bjorken and S.D. Drell, Relativistic Quantum Fields (McGraw Hill, 1964). Mandl, G. Shaw, Quantum Field Theory (Wiley India, 2016). tzykson and J.B. Zuber, Quantum Field Theory (Tata McGraw-Hill, 1980). Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2016). Imran Aziz,Fundamentals of Quantum Electrodynamics, (Ayushman Publications, New Del 	ublishing
	Course Books published in Hindi may be prescribed by the Universities.	

1.MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>

2.National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx

4.Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) First Year/ 8Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programm M.Sc.PH		Year:Seco	nd	Semester:	IX
11.50.111	15105	Subject: Physics			
Course Co	ode: B010904T	CourseTitle: Atomic and	nd Molecular Phys	sics	
	Cou	urse Objectives and Outco	omes		
Course O After com	e puts emphasis on atomic, n	nts will be able to get inform			atoms and
	Credits:4		Cour	rse: Option	nal
	Max.Marks: 25+75	5	Ν	Ain.Passing	g Marks:
	Total No.of Lectures-Tutoria	ls-Practical(in hours per we	ek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	electron atoms, angular m	tomic structure, electronic omentum of many electror c & magnetic field on ato t and stark effect	n atoms ,L S coupl	ing & J J	15
п		rigid rotator and harmon or, anharmonic oscillator a			
III	Deslander's table, Progress	otal energy ,Vibrational sions & sequences, Rotation m,Franck Condon Principle	nal fine structure an	nd P,Q and	

IV	 Raman Spectroscopy Raman Spectroscopy – Raman effect, Rotational Raman Spectra, vibrational Raman Spectra, structure determination using Raman spectroscopy. IV 					
V	X-ray Spectroscopy and Spin Spectroscopy Electron spectroscopy of molecules. Spin resonance spectroscopy, NMR.	10				
	Suggested Readings					
 Fund Introd Mole 	cular Structure & Spectroscopy - G.Aruldhas, 2 nd Ed, Prentice Hall India. amentals of Molecular Spectroscopy - C. N. Banwell & E.M. McCash, 4 th Ed,McGraw fuction to atomic spectra - H. E. White,McGraw-Hill-1934. cular Spectra and Molecular Structure - G. Herzberg (Dover Publication, London). fuction to Molecular Spectroscopy - G.M.Barrow, McGraw-Hill-1962.	/ Hill.				
Со	urse Books published in Hindi may be prescribed by the Universities.					

1MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> 4.Swayam Prabha-DTH Channel,https://www.swayamprabha.gov.in/index.php/program/current he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) First Year/ 8Th semester

Suggested Equivalent Online Courses

1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy

- 2. edX,https://www.edx.org/course/subject/physics
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/Class: M.Sc. PHYSICS	Year: Second	Semester: IX
	Subject: Physics	
Course Code: B010905P	Course Title: General and G	Optics Lab
Co	ourse Objective & Outcomes	
Course Objective: The experiments ar	e an essential and inseparable part of I	Physics Course. The validity
of various Laws and observations are te	ested through experiments in the Lab.	
Course Outcomes: The results of an ex	xperiment (in agreement/deviated fron	n the established pattern)
enable the students to recognise the fau	lts/errors in his approach and encouras	ges to repeat the experimen
with an improved approach.		
Credits:04	Course: Co	ore (Compulsory)
Max.Marks:100One Practical:50 MRecord:20 MViva-Voce:25 M	larks	Min. Passing Marks
Attendance: 05 M		
Total No.of Lectures-Tutorials-	Practical(in hours per week):L-T-P:	
		No. o Hour
	Topics	noui
10. Design of voltage Doubler, Tr	Bread Board and discrete electronic of	

Note:

- > The student has to do a minimum of six experiments from the given list.
- In the practical examination the student will be asked to perform one experiment of two hours duration.

Suggested Readings

- 1. Electronic Principles A. Malvino, D.J. Bates 7thed TMH, N. Delhi.
- 2. Microelectronic Circuit and Devices Mark N. Horenstein, Pearson 2nd ed.
- 3. Fundamentals of Analog Circuits Floyd, Buchla 2^{nd} ed, Pearson 2017.
- 4. Digital System R.J. Tocci, PHI 6th ed, 2000.
- 5. Digital Logic and Computer Design M. Morris Mano, PHI, Delhi 1996.
- 6. Integrated Electronics: Analog and Digital circuits and Systems, J. Millman, C. C. Halkias, TMH, Edition 1991.
- 7. Electronic Circuits and Devices Theory– Boylested, Pearson.
- 8. B.Sc. Practical Physics– C. L. Arora, S. Chand & Company-2010.

Course Books published in Hindi may be prescribed by the Universities.

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> 4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) First Year/ 8Th semester

Suggested Equivalent Online Courses

1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy

- 2. edX,https://www.edx.org/course/subject/physics
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

-	me/Class: HYSICS	Year: Second Semester:X			X
		Subject: Physics			
Course C	Code: B011001T	Course Title: Electron	ic communication	systems	
	Cou	urse Objectives and Outco	omes		
This cour Antennas Course After lea (i) get a (ii) undo (iii) know (iv) undo	Objective: rse makes student aware of mic s are the chief devices that trans Outcomes: rning this course, the students w an idea of various tube based ar erstand the principle of velocity w how an infinitesimal current e rstand how optical fibres carry rstand the behaviour of parallel	smit and receive the signals will be able to: nd semiconductor based so y modulation and bunching element becomes source of light from one end to the o	urces of microwave Electromagnet radi	s.	S.
	Credits:4		Course: Major (Co	ompulsory	7)
	Max.Marks: 25+75		Ν	Min.Passing	g Marks:
Total No.of Lectures-Tutorials-Practical(in hours per week):L-T-P:4-0-0					
Unit		Topics			No.of Lectures
I	Microwaves Limitations of conventional principle of velocity modul efficiency, operating principle	lation and bunching, out	put power and N	•	15
п	Antenna Review of spherical polar coor radiated power and radiation Antenna Gain, Antenna Array Fire array, Effective length effective length, effective area	n resistance, Half – wave y, 2-element and N-elemen and effective area of an	antenna radiating t Array, Broadside	in space, and End –	15
ш	Optical Fibre Optical fibre structure, Light and graded index fibre, Losse fibre communication system.	propagation, Numerical ap			

IV	Transmission Lines General Transmission Line equations, wave characteristics on an infinite Transmission Line, characteristic impedance, Loss-less, low-loss, and distortion-less lines, Transmission line parameters, wave characteristics on finite transmission Line, transmission line as circuit element, Lines with resistive and arbitrary terminations	10
V	Propagation of Waves Ground wave propagation, Space waves through Troposphere, Path curvature and refractive index; Sky waves through Ionosphere, reflection and refraction, Maximum usable frequency, Skip distance, Effect of Earth's magnetic field, Faraday rotation and measurement of total electron content.	10
	Suggested Readings	
1. 2. 3. 4. 5.	Microwave Devices and Circuits 3 rd edition – Samuel Y. Liao Pearson – 2003 Electronic Communication Systems, Fourth Edition – Kennedy. Davis TMH edition 199 Networks, Lines and Fields, J. D. Ryder, PHI Optical Fibres and Fibre Optic Communication Systems – Subir Kumar Sarkar, S. Chand Field & wave Electromagnetics 2 nd Edition – D.K. Cheng, Pearson Education.	

Course Books published in Hindi may be prescribed by the Universities.

PHYSICS

1.MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u>

2.National Programme on Technology Enhanced Learning

(NPTEL),https://www.youtube.com/user/nptelhrd

3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx

4.Swayam Prabha-DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programm M.Sc. PH		Year:Seco	nd	Semester:	X
		Subject: Physics		<u> </u>	
Course Co	ode: B011002T	CourseTitle: Analog and I	Digital Communica	ation	
	Co	ourse Objectives and Outco	omes		
noise, its c of informa Course ((i) under (ii) be fa communic (iii) grasp	Objective: The objective of causes and effects on the ele ation from one place to the of Dutcomes: After completin stand the concepts of genera amiliar with the harmful cation system. the concept of various techr stand the relationship between contained.	ctronic circuits. Also, to un ther. g this course the students w tion and reception of inform effects of ever present " niques of digital transmissio	derstand the techni ill be able to: nation. noise" on the wo	ques of tra	ansmission electronic
	Credits:4		Course:	Optiona	al
	Max.Marks: 25+7	5	Min	.Passing N	Aarks:
Т	otal No.of Lectures-Tutoria	ls-Practical(in hours per we	ek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	Transform and its properties Spectra of sinusoid, rectan	ency domain representati es. Delta function and its ap gular and triangular pulses. dic wave forms, Band limi	pplication in comm Power spectral der	unication. sity, Line	
п	sources, mean square not	e, partition noise, series an ise voltage in an RC circ dth, noise figure, noise figur	cuit, available pov	ver, noise	
ш	Theorem, Pulse Code Mo transmitter and receiver, 7	ation, Natural sampling, dulation; Sampling, Quant Fransmission bandwidth of ttion, Adaptive Delta Modu	ization and Encod PCM, Effect of n	ing, PCM	

		6
IV	Digital Modulation Techniques ASK (OOK), Power spectral density and transmission bandwidth, Non coherent and coherent detection of OOK, BPSK generation and detection, spectrum of BPSK, PSD of BPSK, Differential Phase Shift keying, PSD of MSK, Generation and Reception of MSK.	10
V	Information Theory Discrete messages, concept of amount of information, Average information, Entropy, Information Rate, Channel Capacity, Shannon Theorem, Discrete communication channels, Rate of information transmission over a discrete channel, capacity of a discrete memory less channel Shannon – Hartley Theorem and its implications.	10
	Suggested Readings	
2. Ele 3. Prin 4. Dig	ital and Analog Communication Systems – Leon W.Couch, 8 th edition, Pearson. ctronic Communication – Dennis Roddy. John Coolen, 4 th edition, PHI. nciples of Communication Systems – Taub Schilling, 2 nd Edition, TMH 1991. jital and Analog Communication Systems – K. Sam Shanmugam, Wiley. nmunications Systems – Symon Haykin, 2 nd Ed, Wiley, 1983.	
	Course Books published in Hindi may be prescribed by the Universities.	
	Suggestive Digital Platforms/WebLinks	
2.National I 3.Uttar Prac	n Learning-Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u> Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/use</u> desh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent.asp</u> Prabha-DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/current_he</u>	<u>2x</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/Class: Year:Second M.Sc.PHYSICS		nd	Semester:	X	
		Subject: Physics			
Course C	Code: B011003T	CourseTitle: Advar	nced Solid State I	Physics	
	Cou	rse Objectives and Outco	omes		
This cou	Objective: urse lays emphasis on the van ncluding electric field, temp		ue to structure and	l other ext	ernal
This cla	Outcomes: ss of materials will open the aterials and technology.	door for a number of op	portunities especia	ally in the	field or
	Credits:4		Cour	se: Optior	al
	Max.Marks: 25+75	;	Min.F	Passing Ma	arks:
	Total No.of Lectures-Tutoria	ls-Practical(in hours per we	eek):L-T-P: 4-0-0		
Unit		Topics			No.of Lecture
	Energy bands and Charg	e carriers in Semicondu	ictors		
I	Formation of energy bands, mass of electrons and holes concentrations at equilibrium electrical conductivity and ma	in quantum wells, the Fe m, temperature dependenc	rmi level, electron	and hole	15
	Ferroelectric behaviour o	of Materials			
п	II Ferro-electric crystals, Order-disorder type of Ferro-electrics, Properties of BaTiO ₃ , Polarisation catastrophe, Landau theory of Ferro-electric phase transitions, Ferro- electric domain, Anti-ferro-electricity, Piezo-electricity, Applications of Piezoelectric Crystals.			10	
	Superconductivity				10
III	Meissner effect, Type I a penetration of magnetic field Flux quantization, SQUID, D	, Cooper pairs and B C S T	heory (qualitative t	reatment),	

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u>

4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

U	nme/Class: HYSICS	Year:Seco	nd	Semester	:X
		Subject: Physics			
Course (Code: B011004T	CourseTitle: Liquid C	Crystal Physics		
	Со	urse Objectives and Outco	mes		
flow. Course	Objectives: This course makes Outcomes: The students will 1 ter, mobile phones screen etc.				-
	Credits:4		Course	: Opti	onal
	Max.Marks: 25+75	5	Min.Pass	sing Mark	s:
	Total No.of Lectures-Tutorial	s-Practical(in hours per wee	k):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
I	Classification of Liquid C Introduction, classification o molecules), chirality in liquid polymorphism in thermotrop of polymer liquid crystals	f liquid crystals, thermotro crystals, nematic, cholester	ric and smectic me	sophases,	
п	Phase transitions in Liqu Melting of molecular crys measurement of order param and critical phenomena in 1 crystals, the blue phases	stals, distribution function teters by X-ray diffraction.	Nature of phase t	ransitions	
III	Liquid Crystals in Electri Liquid crystals in electric Freederick transitions, Effect	and magnetic fields, m	-	e length,	10
IV	Other Types of Liquid Con Ferroelectric, Discotic and L applications of ferroelectric mesophase structures-the con Lyotropic liquid crystals, con lyotropic liquid crystal phase	yotropic Liquid Crystals F c liquid crystals, discotic olumnar liquid crystal, th onstituents of lyotropic lic	c liquid crystals, ne discotic nemat	discotic ic phase.	

	Applications of Liquid Crystals	10
V	Identification of Liquid Crystal Phases and Liquid Crystal Technology Identification of nematic, smectic and chiral liquid crystal phases by optical polarizing microscopy (Visual appearance and texture), liquid crystal displays, the twisted nematic liquid crystal displays, nematic liquid crystal displays, liquid crystal displays using polymers, applications of liquid crystals	
	Suggested Readings	
1. Liqui	d Crystals - S.Chandrasekhar, 2 nd Ed, Cambridge University Press.	
2. Therr	notropic Liquid Crystals - Vertogen and Jeu, Springer-1988.	
3. The F	hysics of Liquid Crystals – P.G. de Geenes and J. Prost, 2 nd Ed, Clarendon Press.	
4. Ferro	electric Liquid Crystals - Goodby et al. IntechOpen,2011.	
	luction to Liquid Crystals Chemistry and Physics – P. J.Collings, M. Hird, 2 nd Ed, C.R.	C. Press.
	Course Books published in Hindi may be prescribed by the Universities.	
	Course Dooks published in 1111111 may be preseribed by the Oniversites.	
	Suggestive Digital Platforms/WebLinks	
	Open Learning-Massachusetts Institute of Technology, <u>https://openlearning.mit.edu/</u>	
	nal Programme on Technology Enhanced Learning	
	.), <u>https://www.youtube.com/user/nptelhrd</u> Predesh Higher Education Digital Library http://beecontent.upsda.gov.in/SearchContent	toony
	Pradesh Higher Education Digital Library, <u>http://heecontent.upsdc.gov.in/SearchContent</u> um Prabha-DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/curren</u>	-
т.эwауа	un 1 raona-D 111 Channel, <u>nups.// www.swayampraona.gov.m/muex.php/program/curren</u>	<u>1_117/0</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

-	nme/Class: HYSICS	Year: Seco	ond	Semester:X	
		Subject: Physics		<u> </u>	
Course	Code: B011005T	Course Title: Astroph	iysics		
		Course Objectives and Out	tcomes		
The obje and their Course After co 1. how a 2. what 3. how r 4. how c	r satellites, How stars evol Outcomes:	ere, etc. of planets? ound different planets?	stellar energy etc is.		tmosphere
	Credits Max.Marks: 2		Course: Min.Pass	: Optiona	1
	Total No.of Lectures-Tu	torials-Practical(in hours per	week):L-T-P: 4-0-0	-	
Unit		Topics			No.of Lectures
I	Measurement Techni Methods of measurem temperature, radius and v	ient of astronomical distan	nces, measuremen	ıt of mass,	08
п	gravity, rotation and r perihelion and aphelior atmosphere. The red pl Climate and satellites of	Ellites sion and its interior. Atmosph evolution; earth's precession n, Mercury as morning and anet, rotation & Mass, surfa of Mars, Asteroids and their turn, Discrete nature of rings,	n, earth's distance l evening star, Ve ace features, Hazy orbits, Jupiter; Sa	e from sun, enus and its atmosphere, aturn and its	18
	Classification of stars Classification of stellar s		<u> </u>		

IV	Evolution of stars Protostar Jeans mass, hydrostatic equilibrium, equations of stellar structure, scaling relations sources of stellar energy, Gravitational collapse, Nuclear fusion reactions, proton – proton and carbon cycle, formation of heavy elements; r and s processes, evolution of low mass and high mass stars, white and brown dwarfs, Chandrashekhar limit, pulsars and neutron star.	12
V	Galaxies Types and structural features, The Milky way Galaxy, stellar population in the galaxy, position of Sun, effect of rotation, interaction between galaxies. Active galatic nuclei and quasars.	12
	Suggested Readings	
E 2. As 3. Int C	eoretical Astrophysics (vol. 1 – 3) – T. Padmanabhan, Cambridge University Press, South d. stronomy – Robert H. Baker, 10 th Ed, D. Van Nostrand Company, Inc1976. roduction to Stellar Evolution and Nuclosynthesis– A. J. Norton, Sean G. Ryan, 1 ambridge University Press, te Early Universe – E. W. Kolb, M. S. Turner, C.R.C. Press, Special Indian Ed-1994.	
	Course Books published in Hindi may be prescribed by the Universities.	

1.MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning

(NPTEL), https://www.youtube.com/user/nptelhrd

3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx

4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy

2. edX,<u>https://www.edx.org/course/subject/physics</u>

3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics

5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

Further Suggestions

• Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.

In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

-	nme/Class: HYSICS	Year: Seco	nd	Semester:	K
		Subject: Physics			
Course	Code: B011006T	Course Title: High Energ	y Physics		
	Co	ourse Objectives and Outco	mes		
The r mos und com part Course After skill 1. Un diagra 2. The explai 3. Kno descri	 Objectives: main purpose of high energy plat fundamental building components erstanding and mechanism of aprehend what happens throug icles may be produced. Outcomes: the completion of this elections: derstand the concept and applaums, quark structure of hadrons bey can use the concept of real names of multi-part powledge of different theoretica be the important physics scenaes as ALICE, CMS CBM etc. 	benents of matter and to comp multi-particle production of gh the collisions of nuclei a ve course, students will hav lications of natural units, fu s and knowledge of experime elativistic kinematics in sol- cicle production in hadronic a l models of high energy nucl	prehend their intera- can be acquired by t relativistic energie we the following ca undamental interacti- ental error analysis. ving different prob- and ion-ion collision lear collisions and c	attemptin es, where upability ar ions, Feyn olems and ns. can explain	rther g to new nd man can and
	Credits:4		Course:	Optiona	1
	Max.Marks: 25+7	5	Min	.Passing M	larks:
	Total No.of Lectures-Tutoria	als-Practical(in hours per we	ek):L-T-P: 4-0-0		
Unit		Topics			No.of Lectures
Ι	Natural Units and Funda Introduction to natural units conservation laws, Quark mo and baryons, Fundamental ir of particle physics and its si and Statistical errors, Gaussia	s, Review of (classification odel of hadrons), Eight fold nteractions and Feynman dia hortcomings, Experimental	way classification o agrams, The Standa	of mesons ard model	10
Π	Relativistic Kinematics o Lorentz transformations for Laboratory and Centre-of-m and angle of particles pro momentum frames and their for particle production, Man	energy and momentum, f nomentum systems, calculat oduced in nuclear reaction r transformations and calcul	our-vectors and in tion of energy, mo ns in Lab and co lation of threshold olden Rule, Brief di	omentum entre-of- energies	14

ш	Discussion on Relativistic Hadron-Nucleus Interactions and Approaches to Study Correlation and Fluctuations Rapidity and pseudorapidity variables, Lab and CM-rapidity, Maximum and minimum rapidities, Pseudorapidity distribution in projectile, target and central fragmentation regions. Fluctuations and Correlations: Two-particle correlations, Short- and long-range multiplicity correlations, Entropy and its generalization, Shanon and Renyi Entropies, Characteristics of non-statistical fluctuations, Approaches to study non- statistical fluctuations using Intermittency (Scaled Factorial Moments), Multifractality (G-Moment and Takagi Moment) and Multifractal specific heat, Non-thermal phase transition.	14
IV	Models of High-Energy Nuclear Collisions, Formation of QGP and it's Signatures Participant-Spectator, Bjorken and Lund Model, Space-time evolution of heavy-ion collisions, Phase diagram of strongly interacting matter, De-confinement phase transition, Promising signals of Quark-Gluon Plasma formation, Dilepton production, Drell-Yan Process in nucleus-nucleus collision, Direct photon production, De-bye screening in the QGP, J/ ^{III} suppression in the QGP.	12
v	Modern Detectors in High Energy Physics Experiments Fundamental features of detectors, Sensitivity, Energy resolution and fano factor, Detector efficiency and dead time, Multiwire and Drift Chambers, Ionization, drift and diffusion of charges in gases, Pulse formation and its shape in proportional counters, Multiwire proportional counter:-Working principle and Construction, Di- Muon Spectrometer of ALICE andQualitative discussion on(MuCh of CBM, Physics scenarios at RHIC and LHC energies).	10

Suggested Readings

- 1. Pilkuhn, H.: The Interactions of Hadrons
- 2. Martin, L.P.: High Energy Hadron Physics (John Willey)
- 3. Collins, P.D.B. & Martin, A.D.: Hadron Interactions (Adam Hingler)
- 4. Hagedorn, R. : Relativistics Kinematics (Benjamin)
- 5. Perkins, D.H.: Introduction to High Energy Physics (Addison Wesley)
- 6. Halzen, F. and Martin, A.: Quarks and Leptons (John-Wiley)
- 7. Wong, C.Y.: Introduction to High Energy Heavy Ion Collisions (World Scientific)
- 8. Ferbel, T. : Experimental Techniques in High Energy Physics (Addison Wesley)
- 9. Leo, W.R.: Techniques for Nuclear and Particle Physics Experiments (Narosa)
- 10. Kleinknecht, W.: Detectors for Particle Radiation (Cambridge)

Course Books published in Hindi may be prescribed by the Universities. Suggestive Digital Platforms/WebLinks

1MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/

2.National Programme on Technology Enhanced Learning

(NPTEL),<u>https://www.youtube.com/user/nptelhrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> 4.Swayam Prabha-DTH Channel,https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test/Quiz/Assignment /Seminar

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India,<u>https://swayam.gov.in/explorer?category=Physics</u>
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.

Programme/Class:	Year: Second	Semester: IV
M.Sc. PHYSICS		
	Subject: Physics	
Course Code: B011007P	Course Title: Special Lab	
(Course Objective & Outcomes	
Course Objective: The experiments are of various Laws and observations are Course Outcomes: The results of an enable the students to recognise the fa with an improved approach.	tested through experiments in the La experiment (in agreement/deviated fr	b. rom the established pattern)
Credits:04		Course: Core (Compulsory)
Max. Marks: 100 One Practical: 50 M Record: 20 Ma Viva-Voce: 25 M Attendance: 05 M Total No. of Lectures-Tutorials- P	rks arks	Min.Passing Marks:

Unit	Topics	No. of Hours
	D/A Converter A/D Converter	
3.	Multiplexer	
4.]	De Multiplexer	
5.	Active Filter	
6. '	Transistor feed back Amplifier	
7. 1	Microprocessor 8085	
8.	A.L.U	
9.	Pulse Amplitude Modulation.	60
10.	Study of OP – amp741 as summer, differentiator and integrator.	
11	Astronomical Telescope	
12.	Four probe	
13.	Study of Combinational Circuits	
≻ In	e student has to do a minimum of six experiments from the given list. the practical examination the student will be asked to perform one experiment of two ars duration.	

Suggested Readings

- 1. Electronic Principles A. Malvino, D.J. Bates 7th Ed TMH, N. Delhi.
- 2. Microelectronic Circuit and Devices Mark N. Horenstein, Pearson 2nd ed.
- 3. Fundamentals of Analog Circuits Floyd, Buchla 2nd Ed, Pearson 2017.
- 4. Digital System R.J. Tocci, PHI 6th Ed, 2000.
- 5. Digital Logic and Computer Design M. Morris Mano, PHI, Delhi 1996.
- 6. Integrated Electronics: Analog and Digital circuits and Systems, J. Millman, C. C. Halkias, TMH, Edition 1991.
- Microprocessor Architecture, Programming, and Applications with the 8085– Ramesh S. Gaonkar, 5th Ed,Prentice Hall-2002.

Course Books published in Hindi may be prescribed by the Universities.

1MIT Open Learning-Massachusetts Institute of Technology,<u>https://openlearning.mit.edu/</u> 2.National Programme on Technology Enhanced Learning (NPTEL),https://www.youtube.com/user/nptelhrd

(NPTEL),<u>https://www.youtube.com/user/npteinrd</u>

3.Uttar Pradesh Higher Education Digital Library,<u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> 4.Swayam Prabha-DTH Channel,<u>https://www.swayamprabha.gov.in/index.php/program/current_he/8</u>

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar/

05marks for Class Interaction

Course Pre-requisites

Passed M.Sc. (Physics) Second Year/ 9Th semester

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware-Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam-Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning(NPTEL), https://nptel.ac.in/course.html

- Other digital platforms /web links and Equivalent online courses may be suggested /added to the respective lists by individual Universities.
- In End-semester University Examination, equal weightage should be given to each unit 1-V while framing the questions.